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Preface

This report contains the 1991 annual progress reports of the Research Fellows

and students of the Center for Turbulence Research. It is intended primarily as

a contractor report to the National Aeronautics and Space Administration, Ames
Research Center. In addition to this report, each year several CTR manuscript

reports are published to expedite the dissemination of research findings by the
CTR Fellows.

The Fellows of the Center for Turbulence Research are engaged in fundamental

studies of turbulent flows with the objective of advancing the physical understand-

ing of turbulence which in turn could lead to improved turbulence models for en-

gineering analysis and methodology for turbulence control. The CTR Fellows have

a broad range of interests and expertise; together with the NASA-Ames scientific
staff and Stanford faculty members, they have formed a stimulating environment

devoted to the study of turbulence.

In its fifth year of operation, it appears that CTR has reached its equilibrium in

size, comprising nineteen resident Postdoctoral Fellows, two Research Associates,
three Senior Research Fellows, and supporting eight doctoral students and ten short

term visitors. The major portion of Stanford's doctoral program in turbulence is

supported by the United States Air Force Office of Scientific Research and the Office

of Naval Research. Many students supported by these programs also conduct their
research at the CTR.

Questions on the nature of the small-scale turbulence fluctuations and interscale

energy transfer received considerable attention at the Center last year. This in-
creased activity was in part due to the rejuvenation of large eddy simulation and

the development of new ideas for subgrid scale modeling. This effort included a

novel experimental investigation of the concept of local isotropy at high Reynolds

numbers in the world's largest wind tunnel at Ames. The first group of papers

in this report contain the findings of these studies. They are followed by reports
grouped in the general areas of modeling, combustion, and transition and turbulence

physics. The CTR roster for 1991 is provided in the Appendix. Also listed are the

members of the Advisory Committee which meets annually to review the Center's

program and the Steering Committee which acts on Fellowship applications.

An important item not included in this report is that last year we began serious

planning of a postprocessing facility for the CTR. The objective of this facility

is to develop advanced software for access and processing of the direct numerical
simulation databases. We hope to be able to provide data to the research community

outside the boundaries of the CTR as well as to largely circumvent the tedious

aspects of data management and computer programming for our visitors, including
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the participants at the bi-annual Summer Programs.

It is a pleasure to thank Debra Spinks, the Center's Administrative Assistant, for
her skillful compilation of this report.

Parviz Moin

William C. Reynolds
John Kim
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A preliminary experimental investigation of local

isotropy in high-Reynolds-number turbulence

By Srinivas V. Veeravalli and Seyed G. Saddoughi

\

Detailed measurements of the velocity field were made in the wall boundary layer
of the 80' by 120 _ facility at NASA Ames. The Reynolds Number Rx, based on the

Taylor microscope _ at the measurement location, was approximately 1450, one of
the largest attained in laboratory flows.

The data indicate that to within measurement accuracy, the w-spectrum follows,

but the v-spectrum deviates from, the isotropic relation in the inertial subrange. No

definite statement can be made regarding local isotropy for the dissipating scales

because the spectral measurements were contaminated by high-frequency electrical

noise, but it appears that the inertial-subrange anisotropy persist in the dissipation

region.

1. Motivation and objectives

1.1. Background

The hypothesis of local isotropy at high Reynolds number proposed by Kol-

mogorov (1941, 1962) states that the small-scale structures of turbulent motions

are independent of large-scale structures and mean deformations. This hypothe-

sis is an integral element of most approaches to understanding turbulence be they
theoretical, modeling, or even computational methods like large-eddy simulation.

Local isotropy greatly simplifies the problem of turbulence. The total turbulent

energy dissipation _, which in the usual notation is given by

L\O=) + _ + _z + +2 +

+ + +2

+ +2 °%
2(_) (0_)+ 2 (0_)(0_-)(Oz) (_-ff)]' (1)

reduces to _ = 15u(0u/0z) 2, in locally isotropic turbulence because the first nine

terms in equation (1) are equal to each other and the remaining three terms are

each equal to -(0u/0z) 2 (see Taylor 1935).

In the high-wavenumber region of the spectrum, Kolmogorov's universal equi-

librium hypothesis states that Ell(kl)/(_l/s) -_ is a universal function of (kl#),
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wherefo°°Ell(kl)dkl = -_, kl is the longitudinal wavenumber and r/ = (vs/t)$
is the Kolmogorov length scale.

If the motion is isotropic, the transverse spectra E22(kl) (for the velocity com-

ponent normal to the wall) and Ess(kl) (for the spanwise component) are uniquely
determined from the longitudinal spectrum (Batchelor 1953):

E22(kl) Es,(k,) 1(1 o= = - k, biT)E.(k ). (2)

In the inertial subrange, the 3D spectrum takes the form (Kolmogorov 1941)

E(k) = Cle2/Sk -5/s, (3)

where k is the wavenumber magnitude, and, assuming isotropy, the one-dimensional

longitudinal and transverse spectra are

E_(k_) = c_Plsk_ sis (4)

and

E,,(kl) = E_s(k,) = C_P/'k? _/_ (5)

respectively. The constant C1 is equal to ss_02, and equation (2) evaluated in the

inertial subrange gives C'2/02 = 4/3.

1.?,. Previous work

There have been many experiments, conducted in wakes, jets, mixing layers,
a tidal channel, and atmospheric and laboratory boundary layers, in which the

concept of local isotropy has been investigated. One of the earliest studies was

by Townsend (1948), who took measurements in the wake of a cylinder and veri-

fied local isotropy. Browne, Antonia & Shah (1987) took a comprehensive set of

measurements in the wake of a cylinder at low Rx (_ 40 to 80) and found that

local isotropy was not satisfied in the dissipation range. Townsend (1954) con-
eluded from later measurements that when a uniform mean rate of strain was im-

posed on isotropic turbulence, the dissipating eddies were not isotropic. The recent

data taken by Karyakin, Kuznetsov & Praskovsky (1991) in a return channel at

Rx _ 3000 indicates that neither the inertial nor dissipation ranges are isotropic.

However, Mestayer (1982), who examined this question in a boundary layer at

Rx _ 600, concluded that local isotropy was satisfied by the dissipating eddies but

not in the inertial subrange, Some additional experiments are listed in Figure 11.
There have recently been a number of theoretical and computational studies

stressing the importance of non-local (in Fourier space) interactions in the eriergy

cascade process, and this brings into question Kolmogorov's concept of a self-similar

cascade. Domaradzki & Rogallo (1988) and Domaradzki, Rogallo & Wray (1990)
showed that the energy transfer between similar small scales is largest when the

third leg of the triad is a large scale. Yeung & Brasseur (1991) also demonstrated

the importance of non-local transfer in their numerical simulations and argued that
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such interactions axe important even in the hlgh-Reynolds-number limit. However,

Waleffe (1991) shows that if one considers all possible non-local triads, the net local
transfer due to non-local interactions is not significant, thus local isotropy may not

be affected by large-scale anisotropy or strain. Durbin & Speziale (1991) examined

the equation for the dissipation rate tensor, eij, and showed that local isotropy is
inconsistent with the presence of mean strain.

From the foregoing brief review (for a more comprehensive one see Van Atta

1991), it is clear that there is no consensus regarding the local-isotropy hypothesis,
and, therefore, it seems worthwhile to undertake a fresh experimental investigation

into this question.

2. Accomplishments

I_.I. Apparatus and measurement techniques

The experiments described here were conducted in the boundary layer on the

test-section ceiling of the full scale aerodynamics facility at NASA Ames. The test

section is 80' high, 120 r wide, and approximately 155' long. All four walls of the
test section are lined with acoustic paneling, yielding a rough-wall boundary layer.
The measurement station was located towards the end of the test section on the

centerline of the tunnel. These experiments were conducted while NASA engineers

were investigating the flow around an F-18 fighter aircraft in the central region of
the working section.

Mean-flow, broadband-turbulence and spectra] measurements were taken at two

nominal freestream velocities (Ue) of 40 and 50 m/s.
The hot-wire instrumentation used consisted of Dantec model P51 cross-wire

probes, modified to support 2.5 #m Platinum plated Tungsten wires with an etched

length of approximately 0.6 ram, TSI model 1050 hot-wire bridges, and model 1052

signal conditioners. The X-wires were oriented nominally at ±45 ° to the mean-flow
direction. All of the hot-wires were operated with an overheat ratio of 1.8. The

square-wave response of the anemometers was adjusted for optimum damping, and

their frequency response was better than 100 kHz.

The hot-wire output voltages were digitized on a micro computer equipped with

an Adtek AD830 12-bit analog-to-digital converter. The analog signals for the

broadband-turbulence measurements were low-pass filtered (Rockland model 452

and 852 units) at 70 kHz. In order to span the full frequency extent of the spectra
with a modest amount of disk storage space, the data were obtained in three spec-

tral bands using a band-pass filtering technique with approximately one decade of

overlap (in frequency) between neighboring bands. This also permitted us to change

the dynamic range of the analog-to-dlgital converter to match that expected in a

given band. Overall, the resulting frequency bandwidth for spectra was 0.5 Hz to
100 kHz.

For each point in a turbulence profile, 50 records of 1024 sarnples were taken.
Sampling frequencies varied from 1000 Hz near the wall to 600 Hz near the edge of

the boundary layer. For spectral measurements, 200 records of 4096 samples each

were recorded in the low frequency band and 400 records in the higher frequency
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FIGURE 1. Mean-velocity profile (U, _ 35m/s). 'Modified Clanser chart' method

for rough-wall boundary layers (Perry & Li 1990). $1 is the displacement thickness,
and each of the straight lines corresponds to a constant value of (C//2) 1/2. Error

in origin, e = 1ram.

bands. In each case, the sampling frequency was three to four times larger than the
low-pass filter cut-off frequency in order to avoid aliasing errors. The spectral den-

sities of the hot-wire signals were computed by a fast-Fourier-transform algorithm.

To convert frequencies to wavenumbers, Taylor's hypothesis was used.

?,.?,. Results and discuJsion

_.t,.1. Mean flow and broadband turbulence

The overall features of the boundary layer were measured in detail to verify that
the flow followed standard behavior and that the interference from the F-18 aircraft

was not significant. These results facilitated the choice of points at which spectral
measurements were taken.

One of the problems in rough-wall boundary-layer experiments is to measure the

local skin-friction coefficient, C.t, accurately because, in addition to CI, there are
two other unknown variables which have to be determined. These are the roughness

function and the error in origin, e (Perry & Joubert 1963). The latter variable is the

distance below the crests of the roughness elements which defines an origin for the

profiles that will give the logarithmic distribution of velocity near the wall. Perry

& Li (1990) have developed a modified Clauser plot to find e that is based on the

original method of Perry & Joubert. This method was used to analyze the mean-

velocity data, and as an example, a profile taken at Ue _ 35m/s is shown in Figure
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1. The profile shape appears to be typical and e _ 1ram. The C/value obtained
for this case was about 0.005.

The normalized profiles of the Reynolds normal stresses (u_'2lug2 ,v_'2lug2 ,w_/U_)2
and the shear stress, -_'fi/U_, at U_ ,_ 50m/s, are shown in Figures 2 and 3

respectively.

The agreement between -ui/U_ data obtained by the uv and uw X-wires is very

good. In the outer part of the boundary layer, these profiles have the standard

shapes, but near the wall there appears to be a sharp rise in the values of all

the stresses. In Figure 3 the repeatability of this phenomenon is illustrated. We
wiU not attempt to explain this anomalous behavior, but it may be noted that it

could have resulted from the acoustic panels. To verify that the outer part of the

present boundary layer did follow the standard behavior, a Reynolds-shear-stress

profile is compared in Figure 4 with the profiles of Perry & Li taken over a d-type

rough wall at various Reynolds numbers. In this figure, 5H is the Hama boundary-

layer thickness, which is equal to (U_51)/(CU,), where C = 3.3715 and the friction

velocity, U_, was obtained from the modified Clauser chart. Clearly, there is a good
agreement between these two sets of data in the outer part of the layer.

A profile of the structural parameter al = __-fi/q2, where q2 (= u 2 + v2 + w2) is

twice the turbulent kinetic energy, is plotted in Figure 5. In the canonical flat-plate
boundary layer, this parameter is about 0.15, except near the surface and the outer

edge. The fairly constant value of about 0.13 obtained in the present experiment

indicates that the turbulence structure of the boundary layer was not significantly

affected by any undesirable perturbation. In local equilibrium (dissipation = pro-

duction), the mean strain rate parameter, Sq2/_, becomes equal to 1/al, where
S = OU/Oy. For the present case Sq2/_ _ 8.

Once we verified that the outer part of the boundary layer followed the standard

behavior, the next step was to choose the location 9/5 for detailed spectral mea-

surements. Figure 6 shows the profiles of rms longitudinal velocity fluctuations,
normalized by the local mean velocity, taken at different freestream velocities and

with different wires. This plot not only shows the good repeatability of the results

but also indicates that spectral measurements have to be taken for 9/5 > 0.25 in or-

der to satisfy Lumley's (1965) criterion (that errors arising from the use of Taylor's

hypothesis will be small if V_u2/U < 0.10).

Figure 7 shows a profile of R_ (- V/_u2)_/r,), where )t - _/-_/(Ou/Oz) 2 and the
measured values of Reynolds stresses were used in conjunction with the assumption
that _ = -_-_OU/_y = 15v(Ou/Oz) 2. The maximum Rx occurs at 9/5 _ 0.5.

_._._. Spectra

Based on the results presented in the previous sections, the point y/5 _ 0.4 was

chosen for the spectral measurements. This location in the boundary layer has

the following advantages: (a) it is well inside the layer and boundary-layer edge

intermittency effects are not present; (b) it is well away from the wall, so that the

'bump' in the Reynolds stresses is avoided; (c) it is in the region where Taylor's

hypothesis can be used within the accepted accuracy, and (d) it is the point of
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FIGURE 2. Profiles of Reynolds normal stresses (Ue _ 50m/s). D, -_/Ue 2 (from
uv X-wire);-, u-2/Ue2 (from ttw X-wire); o, _'/U,2; A, W-2-/Ue2.
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FIGURE 3. Profiles of Reynolds shear stresses taken on different days but at the

same freestream velocity (Ue _ 5Ore/s).
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FIGURE 4. Comparison of the present -_'_/U_ profile (.) for Re _ 300000 with

those of Perry & Li (1990) (x and A for low Re and .... for Re --* c_).

maximum R_. Flow parameters for spectral measurements are given in Table 1.

The freestream velocity, U. (m/a) _ 40

The boundary layer thickness, _ (m) _ 1.0

The momentum thickness Reynolds number, Re _ 300,000

Measurement location, y/_ _ 0.4

Local mean velocity, U (m/s) = 35.1

Local turbulence intensity, V_u2/U = 0.08

Microscale Reynolds number, R_ _ 1450

Kolmogorov length scale, _7 (ram) _ 0.1

Ratio of X-wlre span, I/v/2 to _7 _ 4.3

TABLE 1: Flow Parameters.

Figure 8 shows Ezz(kl) obtained in the three measurement bands. Clearly, the

agreement between the three segments of the spectrum is very good. The collapse

for the transverse spectra was equally good. The spectrum spans five decades in

wavenumber and eight decades in amplitude and has a -5/3 slope over a region

spanning approximately two decades in wavenumber. This is one of the longest

-5/3 ranges seen in laboratory flows. It must be noted that although the measure-
ments extend up to kzT/_ 1, the data are reliable only up to kz_7 _ 0.3 because the
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combined error in the spectrum, due tO lack of sufl_cient spatial resolution (Wyn-

gaard 1968) and electronic noise, exceeds 20% for kiT/ > 0.3. To illustrate the

latter effect, u- and w-spectra for the third band-pass segment are shown in Figure
9. The presence of noise and the effect of filter cut-off at high wavenumbers are

quite evident. To rectify this situation, it was assumed that the spectrum taken at

y/5 _ 1.4 corresponded to pure noise (including the wind-tunnel turbulence which
resides mainly at very low wavenumbers), and this spectrum was subtracted from

the one taken at 9/6 _ 0.4. As shown in Figure 10, this process resulted in a

spectrum which dropped off smoothly at the _gh-wavenumber end. Nevertheless,

no definite conclusions will be made for the region k1_7 > 0.3. Figure 11 shows a

comparison between the present data and a compilation of some experimental work

taken from Chapman (1979) with later additions. The agreement is very good.
Note that the behavior of the return-channel data of Karyakin et al. (1991) at
low-wavenumbers perhaps indicates the presence of large-scale unsteadiness in their
_[OW.

To investigate the isotropy of the inertial subrange, we use equations (4) and (5)

and present in Figure 12 the compensated spectra kl -s/s E,(kl), where i = 1,2 or 3

corresponds to u, v or w respectively, in t}_e]nertial subrange, these compensated

spectra should be independent of wavenumber, and the v- and w-spectra should be

equal to each other and larger than the u-spectrum by a factor 4/3. Also shown

in Figure 12(a) are the seventh-order least-square polynomial fits to the u-spectra

obtained from the uw and uv X-wires. These u-spectra are in good agreement,
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FIGURE 8. Longitudinal power spectrum, Ell(k1). The numbered arrows indicate

the three spectral bands chosen.

giving some indication that the differences between v- and w-spectra (figure 12b

and 12c) in the inertial-subrange region may be real. Taking the dissipation as

= 15ufk_E],(ki)dk,, C2 .._ 0.58 and C'= _ 0.75 were obtained from u-and
w-spectra respectively. These both yield C1 _ 1.75. Therefore, it appears that

w-spectrum follows, but the v-spectrum deviates from, the isotropic relation in the

inertial subrange.

The spectral distribution of the ratio of the measured w-spectrum to v-spectrum,

E_e_*(kl)/E_e_a(ki), in the inertial and the dissipation ranges is shown in Figure
13. For isotropic turbulence, this ratio should be equal to 1. In the -5/3 region,

10 -s < kff/< 10 -1, the average value of this ratio is about 1.43. Also, it appears

that the inertial-subrange anisotropy persists in the dissipation range; however, as

mentioned above, the data are not reliable for kit/> 0.3.

Undoubtedly, the present study (see also Veeravalll, Saddoughi, Praskovsky &

Bradshaw 1991) indicates that further experiments, which encompass large sets of

measurement points in a variety of flows, are needed to resolve the unanswered
issues.
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3. Future plans

As explained above, the present measurements were contaminated by high fre-

quency electrical noise, which prevented accurate determination of local isotropy in

the dissipating scales. We plan to concentrate on reducing the noise in the next

phase of the measurements.

Apart from obtaining a new set of instruments which have much lower back-

ground noise, it may be posslble to avoid the high-frequency noise by repeating the
measurements for the same x location but at lower freestream velocities.

It is known that for a self-preserving boundary layer, at a given y/6 position

,,,-, u /6. (6)

As a first estimate, if one uses power-law approximations for boundary-layer thick-
ness and local skin-friction coefficient for a smooth fiat plate (see e.g. Schllchting

1979), it can be shown easily that, at a given x, dissipation scales with free-stream
velocity as

~ (7)

This in turn implies that the Kolmogorov length scale, r/, and frequency, f_, at that

location vary with We as

~ (_e) -_'/'°, (8)

and

~(u.) '°/'°. (9)

Also, using the isotropic relation to calculate )_, it is seen that

R_ ~ (U,) '/2°. (10)

Furthermore, at the hlgh:wavenumber end of the spectrum, if Kolmogorov scaling
is applied at hll 7 = 1, then

Ell(klTl) ~ v _', (11)

where v = (re) 114 is the Kolmogorov velocity scale. The energy spectrum at the

Kolmogorov frequency will then scale as

E,,(fn) .._ (U,) -'1/4°, (12)

which indicates that the energy content of the tail of the spectrum increases with
reduction in freestream velocity.

Therefore, at the same measurement station at which high speed data were taken

in the boundary layer in the 80' by 120' wind tunnel, based on the above relation-
ships, the values in Table 2 can be obtained for y/6 _ 0.4 at lower speeds:
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u. (m/,) ,7(ram) S, (H:) u...o ,,..,,o
measured 40 0.10 56,000 1,450 4.5 0.45 0.25

expected 20 0.165 17,000 1,100 2.6 0.90 0.55
expected 10 0.27 5,100 900 1.7 0.97 0.80

_rt tTABLE 2: Flow parameters at various freestream velocities, u_tio - ElitEll
and v,,,io - E_/E_2 at k,_? = 1, where E_ and E_i are the measured and true

spectra respectively: from Wyngaard (1968). These ratios will be equal to 1, if

there are no spatial-resolution errors in the hot-wire measurements.

Figure 14 shows the noise spectra taken at two different freestream velocities.

The part of the spectrum dominated by noise has a slope of 2 and is (roughly)
independent of velocity since its origins are electrical.

The overall implication of the above analysis is that with a four-fold reduction in
the freestream velocity, one can reduce the Kolmogorov frequency by a factor of 10,

more than double the spatial resolution of the hot-wires, increase the energy content

in the tall of the spectrum by about 50%, and avoid the noise to a large extent,

without much sacrifice in R_. It is hoped that the continuation of experiments
in the 80' by 120' wind tunnel will produce an internally consistent set of results,

which will lead to more definite conclusions regarding the local-isotropy hypothesis.
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Local isotropy in buoyancy-generated turbulence

By Jeffrey R. Chasnov

1. Motivation and objectives

Batchelor et al. (1992) recently considered the turbulent motion generated by
buoyancy forces acting on random fluctuations in the density of an infinite fluid.

This homogeneous buoyancy-generated flow field with zero mean density gradient

was conceived as an idealized system which, like isotropic turbulence, may be useful

as a vehicle loathe general study of turbulence.
The Batchelor et al. study focused on large-scale density and velocity fluctuations

and yielded power-law forms for the asymptotic decay of their mean-square values.

An interesting discovered feature of the buoyancy-generated flow field was that

no matter how small the initial buoyancy force, the fluid motion always becomes

turbulent with an increasing Reynolds number at large times, in contrast to isotropic
turbulence, where the Reynolds number decreases asymptotically.

An increasing Reynolds number of the flow at large times implies an active small-
scale turbulence. Although buoyancy-generated turbulence is not isotropic but is

axisymmetric at the largest scales where buoyancy forces are strongest, it may

become isotropic at the smalles[ scales due to a local Kolmogorov-like cascade of
energy and denslty-variance from large to small scales. The buoyancy-generated

flow field thus presents to Us a simple physical flow in which it is possible to study
the turbulence cascade from anisotropic large scales to isotropic small scales. The

question as to whether large-scale anisotropy may induce anisotropy in the small-

scales even in high Reynolds number flows is a matter of current controversy (Yeung

& Brasseur 1991; Waleffe 1992).
The Batchelor et al. study relied partiy on theoreticai analysis and partly on

direct and large-eddy numerical simulations of the flow field. To this mix, we add
here a two-point closure study based on the eddy-damped quasi-normal Markovian

(EDQNM) closure model applied to axisymmetric turbulence. The EDQNM model

has been shown to yield reasonably accurate quantitative results for a variety of
problems in homogeneous turbulence (Lesieur 1987). The main advantage here in

applying EDQNM to the buoyancy-driven flow field is the wide range of wavenum-

bers over which a solution of the EDQNM equations may be solved• Whereas a

typical large-eddy simulation using 12_"_ grid points has a wavenumber range of

only 60, the EDQNM calculation can be easily run with a wavenumber range of
several decades. Because of the growth in length scales in the buoyancy-driven flow

field, this large wavenumber rang;e allows for a solution of the flow field well into its
asymptotic regime. Recent comparisons between large-eddy simulations and closure

theory (Herring 1990) indicate that a time longer than that attainable by current
large-eddy simulations is required to reach flow asymptotics and that conclusions

based on large-eddy simulation results may be based only on an intermediate tran-
sient state.
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In this research brief, we will briefly introduce the EDQNM equations for the

buoyancy-generated flow field. We then present a Kolmogorov-like theoretical ar-

gument on the scaling of the small-scale spectra. This scaling is then confirmed
by numerical solution of the EDQNM equations. We briefly conclude with possible
future research directions.

2. Accomplishments

$.1. Spectral equation_

The EDQNM approximation for homogeneous buoyancy-generated turbulence

applied to a velocity field u and a buoyancy field ¢ results in time-evolution equa-

tions for four spectra of arguments k and _?k,where k is the magnitude of wavevector

k and _lt = kz/k, where kz is the vertical component of the wavevector.
The four spectra F 1, F 2, F s, and F 4 are most easily defined as the scalar func-

tions which specify the velocity and buoyancy correlation tensors in Fourier space:

< u_(k)ui(k') >= 47rk 2 [F'(k,_?k)e_(k)e}(k) + F2(k,_k)e_(k)e_(k)] 6(k + k'), (1)

< ui(k)¢(k') >= 47rk2FS(k, TlJ,)e_(k),5(k + k'), (2)

< _(k)¢(k') >= 47rk2F4(k,T/k)6(k + k'), (3)

where the three vectors el(k), e2(k), and k/k, form an orthonormal basis which

span the wavespace, and el(k) and e2(k) are given by

k ×j e2(k ) _ k x el(k)
e'(k) = Ik xjl' klk xjl ' (4)

where j is the unit vector in the direction of the gravitational field.

The exact unclosed equations governing the time-evolution of the homogeneous

buoyancy-generated turbulence spectra are

OF 1(k, _lk)

at
+ 2vk2Fl(k,rlk) = Tl(k,Tik),

OF2(k, yk)

at
+ 2vk2F2(k, yk) = T2(k,_?k) - 2gv/_- y_FS(k,77k), (6)

OFS(k, yk)

at + (v + D)k2FS(k, Tlk) = TS(k, _) - gVt_ - tl_F4(k, _?_), (7)

OF4(k, qk)

at
+2Dk2F4(k,_k)=T4(k,_k), (8)
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where v and D are the molecular transport coefficients associated with the velocity

and buoyancy fields, g is the gravitational constant, and the T's are the spectra of
the non-linear transfers. Note that with our definition of the axisymmetric energy

spectra F 1 and F 2, the buoyancy force appears explicitly only in the time:evolution
equation for F 2.

The EDQNM approximation provides a means to express the transfer spectra

solely as functionals of the F's. Although a derivation of the EDQNM forms for

the transfer spectra is too long to present here, we note that the transfer spectra

require evaluation of triple integrals over wavenumber magnitudes p and q (such

that p + q = k) and the azimuthal angle of q. Furthermore, the integrands contain

products of the various F's as functions of (k, r/k), (p, rip), and (q, r/q). In addition,

they contain two phenomenological rates associated with the velocity and buoyancy
fields, which have been fixed so as to recover the reasonable values aE = 1.8 and

aa = 0.7 for the inertial and inertial-convective subrange constants, respectively,

in isotropic turbulence.

,_._. Small-scale spectra

In this section, we apply Kolmogorov-like arguments -- assuming such arguments

to be valid -- to the small-scale spectra of buoyancy-generated turbulence . We

begin by defining spectra E(k), H(k), and G(k), of wavenumber magnitude only, by

E(k) = d,Tk[F'(k,r/k)+ (9)

I'a(k) = dr/ F4(k,,7k). (11)

For an isotropic turbulence, E(k) is the usual energy spectrum, G(k) is the spectrum

of a passive scalar field, while H(k), the spectrum of < u3¢ >, vanishes identically.

Original arguments by Kolmogorov and by Corrsin and Obukhov (Monin & Ya-

glom 1975) state that universal small-scale spectra for E(k) and G(k) may be
constructed from the energy cascade rate _, the kinematic viscosity v, and the

scalar-variance cascade rate e0. We assume here that the Prandtl number (Schmidt

number) a = v/D is unity so that we need not consider small and large Prandtl
number effects. By dimensional arguments, universal small-scale spectra E and G

are defined by

(vS) 1/4E(k) = (evS)]/4E(]¢), G(k) = es -_- G(k), (12)

where

+:(+)'"+ <,.:,>
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defines a dissipation wavenumber kd = (e/v3) 1/4, which separates the inertial sub-

range from the viscous subrange.
It is unclear what form the non-dimensional buoyancy-flux spectrum H(k) should

take, since an additional dimensional parameter, namely g, may enter into its spec-

ification. Nevertheless, we proceed by non-dimensionalizing H(k) without use of g,

call the resulting non-dimensional spectrum h(k),

H(k) = +e'/2 h(k), (14)

and hope for some further guidance from the equations of motion for the non-

dimensional spectra.

These equations are determined from Eqs. (5)-(8) to be

a_(k)
+ 2k2_Ck)= _E(k) + Bh(k), (15)

0h(k____A
o_ + 1 +a ak2h(k) = Th(k) + S(O(k), (16)

aS(k) . .
T + -2k'8(k)_ = To(k), (17)

where t = tV/_ defines the non-dimensional time (we neglect here the time-

dependence of e), the _"s are the non-dimensional transfer spectra, _ = 2/3 if

the scalar field is isotropic at wavenumber k , and B is a non-dimensional number,

defined by

B = gv&"_ (18)
e

The number B may also be expressed as a ratio of a buoyancy wavenumber to the
dissipation wavenumber

where

B -- (kb/]Cd) 2]3, (19)

( °4i ']'
kb=\_+ ] . (20)

For k of order unity and B << 1, buoyancy effects on the flow become small and we

expect the last term of Eq. (15) to be negligible, yielding an energy spectrum free
from the effects of buoyancy. However, the last term of Eq.(16) cannot be neglected

because without it the isotropic equations are recovered and the non-dimensional
buoyancy-flux would vanish identically. This suggests the scaling h(k) = BH(k) so

that a universal function for the buoyancy-flux should be defined by
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vT) 1/4H(k) = g+e _- 9(k),

which yields the following equations for the universal small-scale spectra:

a_(k)
o_-- + 2k+gC+)= :ECk)+ B++Ck),

(21)

(22)

o/_(k)
+ 1 +."k_(k) = _u(k)+ _d(k), (23)

od(k) . .
-{--2k2G(k)a = TaCk). (24)

For B <_<_1, the energy spectrum ]_(k) and buoyancy spectrum G(k) reduce to
^ ^

their isotropic form, whereas a new universal spectrum of the buoyancy-flux H(k)
is defined.

The scalin_ of the three^spectra in the inertial subrange may be obtained by
requiring E(k), G(k), and H(k) to satisfy power-law behaviors such that viscosity

v cancels explicitly. In this way, we find the usual Kolmogorov and Corrsin-Obukhov
spectra

E(k) = aEe2/3k-5/3, G(k) = aaeoe-1/3k -5/3

and an additional inertial buoyancy-flux spectrum

(25)

H(k) --- _Hgeoe-2/3k-7]3, (26)

seen to be directly proportional to g. The buoyancy-flux spectrum H(k) is observed

to decrease faster than _fE(k)G(k) with increasing k as is reasonable for a return-
to-isotropy of the small scales. We note here that a k -v/3 spectrum for H(k) has

been previously predicted for a stably stratified flow (Lumley 1964) and also for the

spectrum of the cross-correlation < uv > in homogenous-shear turbulence (Leslie

1972).

_.3. The turbulence cascade

An interesting consequence of the non-zero inertial buoyancy-flux spectrum, Eq.

(26), is its effect on the inertial cascade of energy from large to small scales. For

wavenumbers in the inertial range, the buoyancy force continually adds energy to
the cascade and an equation for the variation of the cascade rate with wavenumber

may be determined to be

0e(k)
Ok =gH(k). (9.7)

Following Lumley's (1964) work on stably-stratified flows, we assume that the

cascade rate e which enters into the scaling of the universal spectra may be taken to
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be e(k), in contrast to isotropic turbulence, where it is independent of k. (However,

in our buoyancy-generated flow, the density-variance cascade rate ea which enters

into the scaling of the universal spectra is, in fact, independent of k in the inertial

subrange.)
Substituting Eq. (26) for H(k) into Eq. (27), we find

e(k)--coo 1 _ , (28)

where coo= e(oo)istheenergydissipationrateand kbisthe buoyancy wavenumber

definedin Eq. (20)with e replacedby coo. It isclearfrom Eq. (28) that the

cascaderateincreaseswith increasingk and convergesasymptoticallyto the energy

dissipationrate.Itisalsoclearthat the conceptof an inertialcascade must break

down at k _ k6,so thatinertialrangebehaviormay onlybe expected fork6 << k <<

k_. From Eq. (19),thisimpliesthe existenceofan inertialsubrange onlyforB << 1.

Correctedinertialsubrange scalingdue tobuoyancy may now be determined by use

of e(k),Eq. (28),fore inEqs. (25)and (26).

_._. EDQNM small-_cale spectra

The ideas just developed have been tested by numerical solution of Eqs. (5)-

(8) using EDQNM forms for the transfer spectra. Initial conditions are such that
F4(k, r/k) is taken to be independent of qt with spectra proportional to k 2 at small
wavenumbers. The spectra F 1, F 2, F 3 are assumed to be initially zero. Physically,

this corresponds to a fluid initially at rest with a given homogeneous buoyancy
field containing large-scale fluctuations. Other initial conditions have also been run

(F 4 -,_ k4 at small wavenumbers; F 1 and F 2 with given non-zero spectra, etc.), and

for time-evolutions well into the asymptotic regime, it is observed that the scaling

of the small scales becomes independent of the initial conditions.

The approach of the small-scale turbulence to isotropy can be observed in Fig. 1

where we have plotted F 1(k, r/t, = 0), Fl(k, rlk = 1) and F2(k, rlk = 0), F2(k, rlk = 1)

at a time well into the asymptotic regime. Small-scale isotropy occurs if, at large
wavenumbers, the spectra become independent of r/k and F 1 = F 2, as is indeed

observed. The large-scale anisotropy of the flow is also dearly evident where these
four spectra diverge at low wavenumbers. In fact, it is easy to show that the

behaviors of F a and F 2 as k --, 0 are very different in that F 1 _ k 4 whereas

F 2 -,_ k2, the former due to non-linear transfer, while the latter due to the direct

effects of the buoyancy force.

We have tested the sealing laws given by Eqs. (12) and (21). Unsealed spectra

E(k), G(k), and H(k) at two different times in the asymptotic regime are shown

in Fig. 2, whereas the scaled spectra _?(/¢), 6/(k), and H(k) are shown in Fig. 3.

A near-perfect collapse of the small-scale spectra at the two times is evident, in

agreement with our earlier analysis. Also in Fig. 3, we show power-law behaviors
corresponding to k -5/3 and k -r/3. The slight deviations of the EDQNM spectra

from these predicted power laws need to be understood, although they may only be
due to numerical errors.
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3. Future plans

It is of interest to apply some of the ideas developed for homogeneous buoyancy-

generated turbulence to homogeneous stratified flows. The stably stratified case is

perhaps the most relevant to mixing in the oceans and the atmosphere. It is easy
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to modify the EDQNM equations for this problem, and some interesting analytical
and numerical results (which include large-eddy numerical simulations) have already

been obtained for the case of negligible buoyancy (Chasnov 1992). When both

buoyancy and mean-stratification are important, the complications arising from the
generation of gravity waves must be considered.

Some of the ideas developed for homogeneous buoyancy-generated turbulence

may also be applicable to homogeneous shear-flow. (For example, both of these

flows have four defining spectra, an increasing Reynolds number at large-times, and

possibly a small-scale k -TD behavior for the co-spectra). It will be of interest to

see how far possible analogies between these two types of flows may be exploited.
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Non-linear interactions in homogeneous
turbulence with and without background rotation

By Fabian Waleffe

1. Motivation and objectives

This project started from a discussion with Dr. Srinivas Veeravalli about the effect

of rotation on turbulence during the CTR 1990 summer program. There seemed to

be conflicting reports on the effect of rotation. Some expected a Taylor-Proudman

reorganization of the flow at strong rotation rate, but this was refuted by linear

analysis and direct numerical simulations (DNS) owing to the existence of inertial

waves (Speziale et al. 1987). Linear analysis and DNS suggested an isotropization

of the flow, but some experiments (e.g. Hopfinger et al. 1982, Veeravalli 1990) and

analyses (Cambon &: Jacquin 1989) showed a tendency towards anisotropy. These

effects appear at small Rossby numbers, and it seemed that a weakly non-linear

analysis could shed some light on the problem.

At the same summer program, Domaradzki et al. (1988, 1990 a,b) continued
their study of triadic transfers. Tlqeir conclusions were that turbulent transfers

are dominated by non-local interactions with local energy transfer. This is only

partly consistent with the common wisdom that local interactions with local energy

transfer dominate the inertial cascade. Brasseur et al. (1991 a,b,c) then called on

this predominance of non-local interactions to refute the Kolmogorov assumption of

local isotropy at the small scales. The inertial wave decomposition showed features

observed in the simulations. A deeper analysis was undertaken in search of a better

understanding of triad interactions and of the significance of the numerical results.

2. Accomplishments

The helical (or inertial wave) decomposition of the velocity field clearly identifies

two types of triadic transfers depending on whether the small scale helical modes

have helicities of the same or the opposite sign. Only one type of interaction shows

local transfer when the triads are non-local. In those cases, the local cascade to

higher wavenumber must always be accompanied by a feedback on the large scale.

An instability principle, suggested by the stability characteristics of triad interac-

tions, has been introduced and predicts the direction of the energy transfers. These

predictions agree with DNS and the Test Field Model.

Although the transfer from the medium to the longest leg--_econa-es dominant

in non-local triads, the change in the energies of the long legs is not large. This is

because of a cancellation occurring when summing over several triads. In particular,

one must always consider the two triads involving the large scale and its conjugate.

The net result of the large local transfers is an advection in wave space. The

cascade (or flux) of energy through a given wavenumber is not dominated by the

large local transfers either. This is a consequence of the necessary feedback on the
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large scale. For each large local transfer through a wavenumber, there are many

feedbacks on the large scale. In an infinite inertial range, it can be shown that
the net effect is actually a reverse cascade to the large scales. One must conclude
that _non-local interactions with local transfers' are not dominant in turbulence.

The rejection of the Kolmogorov hypothesis of local isotropy at the small scales is
thus ill-founded. The other type of triad interactions, which do not have the local

transfer character when the triads are non-local, are the interactions responsible for

the inertial cascade to larger wavenumber. Their structure shows strong similarity

with the elliptical instability [Waleffe 1991].

The main effect of background rotation is to restrict triad interactions to resonant

ones. The instability principle still applies and, coupled with the triad resonance

condition, it predicts a transfer of energy towards wavevectors perpendicular to the
rotation axis. That tendency is observed in experiments, DNS, and an EDQNM
model.

_.1. Homogeneous turbulence

_. 1.1 Helical decomposition

The flow of an incompressible fluid in a periodic box of side L is conveniently

represented by its Fourier series

=

where k = (m, n, l)27r/L, with m, n, 1 = 0, +l, 4-2, .... In Fourier space the con-

tinuity equation requires that k. if(k) = 0, and thus there are only two degrees

of freedom per wavevector. Here, the two degrees of freedom are chosen as the

mazimum and minimum helicity modes,

= + a_h*

where

The *

(1)

= i 7. (2)

superscript denotes a complex conjugate, g = k/k is the unit vector in the

direction of k, and z7is a unit vector orthogonal to k, k. 17= 0. One can ch2ose , for

instance, Y = (_'×g)/ll_'×Y[I, where _'is an arbitrary vector. The vectors h, h* are

the eigenmodes of the curl operator,

i#x = k (3)

The modal kinetic energy and helicity are given by, respectively:

(4)

+ =r_ •
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where _ = ik×ff is the vorticity. It is clear that the + mode corresponds to maxi-

mum helicity and the - mode to minimum helicity (normalized by the energy). It

is said that the two modes have opposite polarities.

The quadratic non-linearity of the Navier-Stokes equations induces interactions
between triads of wavevectors /_ +/7 + _' = 0 only. There are eight fundamental

interactions corresponding to each value of the triplet (st, sp,sq), where sk, sp,sq

are sign coefficients equal to +1 which identify the helical mode involved for/_,f, _',

respectively. The eight possible interactions will be denoted by the integer i =

1,...,8, following a binary ordering: 1 = (+,+,+), 2 - (+,+,-), 3 - (+,-,+),

4 _-- (+, -, -), ..., 8 = (-, -, -). As a result of these interactions, the modal energy
and helicity evolve according to equations of the form:

0 1 s

(-_ + 2vk2)e(g)= _ F_, _ t")(L_,q-_
r,+_+_=0 i=1

(5)

0 1 s

(N + 2vk2lh(k)= _ _ _,kkt")(g,g, q3 (61
£+f+_=0 i=1

The factor 1/2 comes from a symmetrization of the energy transfers, t(1)(_c,f, q_ =

t(0(f, _',p3.
In an inviscid fluid, total energy and helicity must be conserved at all times. A sin-

gle triad of helical modes constitutes a kinematically acceptable initial state which
must conserve energy and helicity at time zero. Therefore, the transfer functions
t(1)(k,_, q-')must satisfy

• "_ .(i)l -. -. ;'_ " -"
t(')(k,f,q _) + t (p,q,t_) + t(')(_,k,p ") = 0

skk t(i)(k,f, _ + s,p

which imply that

t")(L f, q3
spp -- Sqq

The full expression for t(')(k,p, q-')is

1
t(O(k,f,q -') = _ (Spp - s,q) [skk +

t(i)_ "* -"tp, q, k) + Sqq t"_(4', k, p3 = 0

t(i)(ff, _, k) _ t( O(q. _c,p-') (7)
Sqq -- skk skk -- Spp

derived in [Waleffe 1991]; it reads:

spp + sqq] O
2kpq

x sk_ e'_(_,,_,,_,,) + c.c. (s)

where Skpq= ,.qkSpSq = 4-1, exp(i/5) is a phase factor representing the orientation of
the triad with respect to some reference frame, and

Q sin c_l, sin o£ = sin _q
2kpq - k p q

with Q2 = 2k2p2 + 2p2q2 + 2q2k2 _ k 4 _ p4 _ q4 > O.
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e.I.IJ Energy transfers and the instability principle

The three coefficients spp-sqq, sqq- skk, skk- sup sum up to zero, so in general

when k, p, q are distinct, one coefficient has a sign opposite to the other two. It is
clear that this can never be the coefficient of the longest leg. If q is the longest

leg for instance, then sup - sqq has the sign of -sqq and sqq - stk has the sign of

s¢q, thus one of these must necessarily be the coefficient whose sign is opposite to
those of the other two. The relations (7) then show that there are only two types of

triadic energy transfers depending on whether the helical modes associated to the

two longest legs have helicities of the same or of the opposite sign as illustrated in

fig.1.

k k

q p

FIGURE 1. The two types of energy transfer for k < p < q: 'B' interactions when

sp = sq, energy flows out of middle wavenumber; 'E' interactions when sp = -sq,
energy flows out of smallest wavenumber.

The (inviscid) equations are reversible and the transfer of energy can occur in
both directions in any particular realization (e.g. when k < p < q the sp = -Sq

transfers can be either to or from k). However, it is proposed here that statistically

each triad interaction extracts energy from the mode whose coefficient has a sign

opposite to those of the other two. This says that interactions involving small scale

helical modes of opposite polarities will draw energy out of the large scale, while
interactions where the small scale helical modes have the same polarity draw energy
out of the medium scale. This is called the instability principle. It is inspired by

the stability properties of the elementary triad interactions described below. The

instability principle is consistent with the TFM model and DNS [Waleffe 1991].

Kraichnan (1967) used an equivalent assumption in his analysis of 2D turbulence,
where interactions are of the 'B' type only, stating that one intuitively expects

a "statistical spreading of the excitation in wave space". He also showed that
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assumption to be consistent with the early time development of an initially Gaussian
distribution.

A single helical mode is an exact solution of the Navier-Stokes equation,; this is
a direct consequence of the continuity equation iT. k = 0. That solution is unstable

when perturbed by a smaller scale helical mode of the same polarity and a larger

scale mode (of either polarity), such that the three modes form a triad. It is also
unstable if perturbed by smaller scale helical modes of mutually opposite polarities.

These conclusions are deduced from the equations for a single triad interaction.

From (7) they have the form

_tsk = (spp -- 8qq)C a's,a*

a., = (sqq - skk) C a:, _:.

_o,= (skk- _pp)C _:._:,

(9)

The evolution of small disturbances a,,, a°, on the base flow (a°,, a,,, ao,) =

(0, A, 0), for instance, is determined by the equation

d2 £1slt

dt 2 = (spp- sqq)(s_k - spp) CO* AA* a._

There are exponentially growing solutions if (spp - %q)(skk - spp) > 0. Hence
the unstable mode is that whose coe_cient in (7,9) has a sign opposite to the other
two. Some justification for the instability principle might be that although there are

disturbances both growing and decaying exponentially, the average flow of energy

for the unstable mode is outward because (e _t - e-2t)/2 _ 0.

2. I. $ Non-local interactions

A non-local interaction is such that one leg of the triad is much smaller than the

other two, which are then nearly equal. Choose for instance Iq - k] < p << k __ q,

then from (7)

,,_ -q t(i)(f, _, _¢)t(°(_:,E q-3-q _ (sksq)k

~ (sksq)k t(O(E _, £)tO)(q' k' _ - q - (SkSq)k

When sk = -Sq this reduces to

and when sk = sq,

t(1)( _, P, q3 ~ t(1)(q, k, P3 ~ -ll_(i)(ff, q, k)

~ -q
t")(Lf, q-_-_- k t")(f, _',£)

k

t(1)(q' ]_'P3 '_' q---'_ l_(i)(ff, q, k)

(lO)

(11)
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From (7,8),

tc0(f,¢, _ ks) t++.e'"o.,°..°..+col

There is no reason to expect the triple correlations < a,ha+,a, , > to vary strongly
from one interaction to the other, at least in non-helical turbulence. Thus the

transfer t(1)(/7, _, k) into the smallest leg should be of about the same magnitude for

all interactions, whether sk = Sq or sk = -sq, and of order O(q - k). However,

(10,11) show that the transfer into the long legs k and q will be strongly dominated

by sk = sq interactions with a large exchange of energy between the long legs.

According to the instability principle, that transfer should be from the medium to

the longest leg. This is also what the DNS suggest. This analysis confirms, for a
single triad, the results of Domaradzki and Rogallo. The important point for the

following is that the large local transfer from the medium leg to the longest mu_t
necessarily be accompanied by a feedback into the small leg (11).

FIGURE 2. The rate of change of mode k comes from two triads involving the

large scale/_

Although the transfer between the long legs within a single triad is very large, the

net effect on either of the long legs is not necessarily large because of cancellations
occurring when summing over several triads. One other triad which must always be

considered is that involving the complex conjugate of the large scale (fig.2). In the

simplest case where the small scales interact with a single large scale mode U(p-'),

the equation for g(k) is

0
+ = -iF,,,,. - + +P3] (12)

where Pl,.. = k._Pt. + k.Pl,, with Ptm = 6+,. - ktk.,/k 2. Separating the large

scale into its real and imaginary part [7 = [7r + i_r i and assuming that if(it + p-') =

if(i:) +/7. V_ if(k), one derives the equation for the energy of the small scale,

(-_ + 2vk 2) e(k') = -2(U' • re)/7. _k e([:) + if*. S. ff (13)

where e(_¢) = 1/2 if* .if, S = [/7f.7i + [7+p_, and _k = O/cgf_ is the gradient in Fourier

space. One gets the same equation from the linear evolution of disturbances on an
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unbounded shear obtained by expanding the large scale flow in the neighborhood
of/7. _ = 0, rY(_') __ 2_ r - 2U'/7. aT. Each term in (13) scales on the strain rate

p-_i of the large scale unless the energy distribution is very sharp in Fourier space.

The advection term comes from the difference of two large triadic terms which scale

on the amplitude of the large scale. That term advects energy in the direction of

/7 (fig.3). Thus it tends to deplete the energy of the small scales in the direction
perpendicular to/_ This conclusion is opposite to that of Brasseur and Yeung

(1991).

P

k

FIGURE 3. The multiple 'B' interactions with the large scale/7 tend to advect

energy in the direction of/7, with feedback on the large scale.

FIGURE 4. Partial sum over triads of a given shape shows the necessary cancel-

lations both for the rate of change of a small scale and for the net cascade across
kc.

Although there is a cancellation of the large local transfers for the net effect on

a small scale, one might still think that the large transfers represent a strong flux

of energy through a wavenumber kc and are the essence of the energy cascade from

large to small scales. This is not the case because of the feedback of energy into the

large scale associated with the transfer from medium to small scale. The net flux
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of energy across a wavenumber kc is the sum of contributions from many triads.

There is a large local contribution but many small non-local feedbacks into the large

scale (fig.3,4). In fact, it can be shown by summing over all triads of a given shape

(somewhat as in fig. 4) that, for an infinite inertial range, the net cascade from
'B' interactions which are responsible for the large local transfers is actually from

small to large scales [Waleffe 1991, sect.5]. The two types of triadic transfers ('E'

for eddy-viscosity, and 'B' for backscatter) and their contributions to the energy

cascade are shown in fig.5.

'F' .......::::::::::::::S:IIIIII..............

_x_:¢.'-_.... .0..,. ".... "..

'R .......::::::::::::::::::ZIIII::I.............

k,

FIGURE 5. The various types of triadic transfers involving a large scale, which

contribute to the cascade through kc. Solid lines represent transfers in a single

triad.

The significance of the non-local interactions with local transfer is to be found in
the "cusp-up" behavior of eddy-viscosity models near the cut-off wavenumber. This

is clearly illustrated in fig. 5. If wavenumbers above kc are not included, the flux of

energy to small scales from the missing 'E' interactions can be modeled by an eddy-

viscosity, but there is also a large sink of energy for wavenumbers near the cut-off

which requires a cusp-up in the eddy-viscosity. This energy drain near the cut-off

is linked to a negative contribution to the eddy-viscosity at small wavenumbers.

_.l_. Turbulence under strong background rotation

Linear perturbation of a state of solid body rotation can give rise to a spectrum

of inertial waves (Greenspan 1968). These inertial waves have the structure of the
helical modes introduced in section 2.1.1. Indeed the linear inviscid equations in

the presence of uniform background rotation _ read

0_.
_u + 2fixff= -Vp

which for a Fourier mode t7 -- _t exp(ik • _ + iwt), where f¢-ft = 0 for continuity,

becomes

+ =
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Taking the cross-productof thisequationwith ik gives

w(ikxh) = 2(k._)

which shows that the helicalmodes hm, with ikx_, = skho (s = +1), are the

eigenmodes ofthe linearperturbationsofrigidrotation.The dispersionrelationfor

thosehelicaleigenmodes followsas

showing that the two eigenmodes have oppositepolaritiesand opposite eigenfre-

quencies.

In the presenceof background rotation_ = f/_',the helicalformulationof the

Navier-Stokesequationsreads,from (9),

0

(-_ -iWo_ + vk2)a,, = Ro E(spp- s,q)Ca* a:, (14)

The Coriolisforcecontributesthelinearterm iWo_aok,withws_ = st cosOk,cos0_ =

g" _',g = k-lk. The symbol _ representsa sum overalltriadsk + f+ _= 0 and

allinteractions(st,sp,sq).The equationshave been non-dimensionMized using

(2f_)-I as the time scaleand V and L as the characteristicvelocityand length

scales,respectively.The parameter Ro = V/(2f_L) is the Rossby number, and

v = v*/(2fIL2) isthe Ekman number with v* as the dimensionalviscosity.Our

interesthere isin small Ekman and Rossby numbers (largef_).This isa multiple

time scaleproblem. On the time scaleof the rotation,the amplitude ao_ behave as

a°_ = b°kei_"k t (15)

where the bsk are essentiallyconstant.The rateof change of the bok isfound by

substituting(15)in (14),

0
+ ,k2) b.. = Ro sqq)Cb;b:. )' (16)

Clearly the bo_ evolve on the slow time scale Rot from non-linear interactions.

Interactions such that wok + ws, 4-w0, _ 0 will tend to average out over the long
time scale so that the approximate equation for b,_ is

0

#p,o_ _+_'+,]r=o

This equation is identical to that arising in homogeneous turbulence except that

the sum has been restricted to resonant triads. The only acting triads are those
which satisfy:

k cos Ok + p cos Op+ q cos Oq = 0
(is)

sk cosO_ + svcosO p + Sq cosOq = 0
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which requires that

cos Ot cos Op cos Oq
= = (19)

spq - sqp sqk - skq skp - spk"

The stability characteristics of a single triad (9) are unchanged, and the instability

principle can be used here as well. For the purpose of the discussion, let again
k < p < q as in fig.1. The instability principle states that interactions where

sp = -aq transfer energy from the small leg k to p and q, while interactions where
sp = sq transfer energy from p to k and q. From (19) when sp = -sq one finds

cosOp - k - (sksq)q
_(q + p) cos Ok

COS0q= k + (Skaq)p COS0k
-(q + p)

(20)

These interactions then transfer energy to modes p and q such that ] cos 0p I, Icos 0ql

< Icos0kl, because k < p < q. Likewise, when sp = Sq, (19) gives

q - P cosOp
cosOk = k - "(_-sksp)q

(8ksq)p- k

cose,- cos0,

(21)

and these interactions transfer energy from p to modes k and q with Icos Okl, Icos Oql

< Icosepl. Thus all interactions transfer energy towards smaller values of cos0,
i.e. towards wavenumbers perpendicular to the rotation axis. However, resonant
interactions can not transfer energy directly to wavenumbers perpendicular to the

rotation axis. If cos Oq = 0 for instance, then from (19) (skp- spk)cos Ok = (skp-

%k)cosOp = 0, which requires st = sp and k = p. The resonance condition (19)
then imply that cos Ok = - cos 0r, but the rate of transfer of energy (7) into mode q

is proportional to skk - sup and thus vanishes in this case. This last result has been

obtained by Greenspan (1969) for eigenmodes in a bounded container. Resonant
interactions transfer energy towards smaller values of Icosel = Ik,/kl but not to

cos 0 = 0. This transfer of energy towards smaller Icos 01 is verified numerically in

the DNS of Mansour (1990). It is also predicted by an EDQNM model of Cambon

and Jacquin (1989). The average over a random distribution of modes with cos 0 ___0
shows that 2 < w 2 > / < u 2 + v2 >'_ 2, while this ratio would be equal to 1 in

isotropic turbulence. This tendency is observed in the experiments of Veeravalli

(1991) (fig.10 with u and w interchanged).
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3. Future plans

3.1. Mazimum instability principle

The instability principle described in 2.1.2 determines the sign of the triadic

energy transfers. Its mathematical formulation is that stpq exp i/3 < aok ao, asq >
+c.c. has the sign of

-(spp - sqq)(s_q - stk)(skk - spp)(stk + spp + Sqq). (22)

This assumption gives qualitatively correct results for the direction of the energy
transfers. In order to obtain quantitative information, it is necessary to strengthen

the assumption. As a first example, consider the ma_iraura instability principle:

S,pq expi/3 < ao, a°,ao, >= ala0,1 lao,I la°,l (23)

where a is the sign of expression (22). With this assumption, each interaction drains

the maximum amount of energy permitted by the respective energy of each mode
from the unstable mode for that particular interaction. This assumption of maxi-

mum correlation is likely to be too strong, but it satisfies all detailed conservation

properties and gives a realizable model. The rate of change of the modal energy

is proportional to the square root of the energy and vanishes when the energy is
zero, so energies should not become negative. In isotropic turbulence, this leads to
a model of the form

0
(-_ + 2vk2)E(k) = E CS'pq[E(k)E(p)E(q)]I/2"

3.2. Cusp-up behavior of the eddy-viscosity

The cusp-up in eddy-viscosity models is linked to an advection process in wave

space. When a sharp cut-off is introduced, energy can not be advected beyond

the cut-off and needs to be removed by an increased viscosity. Instead it might be
possible to design some "free-outflow" boundary condition at the cut-off. Note that

the '3/2-rule' used for dealiasing spectral computations perhaps acts as a "soft"

boundary condition which does not require a cusp in the eddy-viscosity. In real

space, one needs to study how numerical methods deal with the "squishing" of
structures beyond the grid resolution. If small or narrow eddies can be squished

below the grid size, a cusp is not necessary in the eddy viscosity. The evolution of

a small Fourier component on a large scale stagnation point flow should be a good
test.

3.P.. Effect of a wall in rotating turbulence

As shown above, the instability principle predicts a transfer of energy towards

smaller values of _. k/k, but resonant interactions can not transfer energy to

wavevectors orthogonal to the rotation axis. Thus there is only a tendency to-

wards two-dimensionality. The experiments of Hopfinger et al. (1982) show a much
more dramatic two-dimensionalization of the flow.



42 Fabian Waleffe

Preliminary analysis suggests that the presence of walls induce new interactions.

For each wave incident on a wall, there must be a reflected wave in order to sat-

isfy the boundary conditions. This sets up some strong correlations between some

Fourier components independently of the non-linear effects. Also, in the reason-

ing leading to equation (17), the resonance condition should in fact be relaxed to

wsk + w,, + _,, = O(Ro). Thus all modes nearly orthogonal to the rotation axis
are essentially 'resonant', or in other words, the "phase scrambling" (Mansour et

al., 1991 (b)) due to linear effects does not affect low frequency modes. This re-

laxes the constraints that st = sp and k = pwhen cos0¢ = 0. The st = -sp
interactions are now allowed, and those transfer energy to mode q. One antici-

pates that these two effects, correlation between incident and reflected wave and
near-resonance of all modes nearly orthogonal to the rotation axis, will lead to a

stronger two-dimensionalization of the flow.
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On small scale vortices in turbulent flows

By J. Jim_nes

It has been known for a long time that the small scales of turbulent flows are not

completely random. It was first shown by Batchelor & Townsend (1949) that the

statistics of the velocity derivatives are incompatible with an uncorrelated random

behavior of the velocity field at scales comparable to the Kolmogorov dissipation

limit. In particular, the n-th order flatness factors of the velocity derivatives would

be universal constants for a gaussian random velocity field, whereas experiments

show them to be functions of the Reynolds number. The original experiments were

extended and refined several times, both in the laboratory (Kuo & Corrsin, 1971,

Champagne, 1978) and in numerical simulations (Siggia & Patterson, 1978), with

generally consistent results. A summary of the available data can be found in (Van

Atta & Antonia, 1980).

It was soon realized that these results implied the existence of intermittent or-

ganized structures at the short wavelength end of the spectrum, and experiments

were attempted to clarify their geometry . It was Kuo & Corrsin (1972) who first

presented suggestive evidence that the high vorticity loci were vortex tubes or, at

most, ribbons, but it was necessary to walt for the advent of direct visualizations

of numerically simulated flows before these more or less flattened vortex tubes were

shown to be the dominant structures of isotropic turbulent flows at high vorticity

amplitudes (Siggia, 1981, Kerr, 1985, Hosokawa & Yamamoto, 1990, She et al.,

1990, Ruesch & Maxey, 1991, Vincent & Meneguzzi, 1991). A re-examination of

older data fields in numerically simulated turbulent shear layers, homogenous shear

flows, and channels shows the presence of compact vortices of roughly similar char-

acteristics. These will be discussed below. Finally (Douady et al., 1991) _produced

direct experimental visualizations of strong concenfrated permstent vortices m ho-

mogeneous turbulence, and (Schwarz, 1990) published pictures of organized strain

structures which show up as alternating bands of consistent orientation of flakes

suspended in a grid-stirred flow. It is not clear how or whether these structures are

connected to the vortex tubes, but they are persistent and seem to have comparable
dimensions. • =

We _will summarize here the experimental evidence available for these compact,

small scale vorticity structures, using both published results and other available
numerical flow fields. That evidence will be discussed in the next section and shows

that there is a certain homogeneity of the small structures across flows whose large

scale character is very different. We will then use those general characteristics to

define a simple model for the small scale vortices and, in particular, to explain some

of the experimental observed relations between the vorticity and the rate of strain

tensor. Our main result is that many of those properties turns out to be essentially
kinematic.
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Phenomenology

The definition of a vortex tube is a subjective matter that probably varies among

different authors, but it seems to refer in most cases to the structures with the

highest values of vorticity in the flow (although some adjustment has to be done in
wall bounded flows for the presence of very strong vortex layers at the wall). It may

be possible, however, to get some idea of their characteristic sizes and strengths by

comparing data from different sources.

There seems to be reasonable agreement that the diameter of the tubes is in-

termediate between the Taylor microscale, _, and the Kolmogorov scale, 7, in the

range of 4 - 10r/. However, since most estimates come from numerical simulations

for which Rex -_ 100 and _/T/__ 15, it is difficult to distinguish between low multi-

ples of 17and high fractions of _. The vortex length is quoted as being of the order
of either a small multiple of _ or of the integral scale of the flow, L. Again, since

L/_ __ Re_/2/5 -_ 2, for Rex m 100, it is difficult to distinguish both possibilities.
Still harder to estimate is the intensity of the vortices, which can usually be

derived only indirectly from other quantities given by the different authors. It is

expressed best as a Reynolds number based on the total circulation, 7, in the tube

Re-q _ "y/W.

It is interesting that whenever this quantity can be estimated, it seems to be in

the range, Re._ _,, 100 - 500 (see Table 1 and Appendix I for the derivation of the

different cases). This is true even for flows like the wall region in a channel or like the
turbulent mixing layer, in which the detailed turbulence dynamics are presumably

quite different from those of homogeneous turbulence. Once more, since all the
observations come from numerical simulations at low Reynolds numbers and given

the uncertainties in the calculation of the circulation, it is difficult to know whether

the information in Table 1 should be interpreted as a range for Re_ or as evidence

for a dependence on Rex. From the analysis of the only two cases in which data are

available for several Reynolds numbers - the channel and the homogeneous shear

flow (see Appendix I) - there is some reason to believe that the circulation of the
cores is an increasing function of the bulk Reynolds number, at least in the range

for which experimental data are available.

On the other hand, Re x __ 150 is at least a plausible value for the intensity of
the smallest observable vortices. Since the vortices are defined as loci of very high

vorticity, they have to be produced by stretching of previous structures, which is
the only mechanism able to amplify vorticity away from walls but which does not

modify the total circulation. As long as a vortex is being stretched, there is no limit

as to how thin its core can become, and there is a well known equilibrium solution

(Burger's vortex, see Batchelor, 1967), for which the rate of strain, S, compensates
viscous dissipation at a radius of order (S/u) 1/2. The structures in which we are

interested, though, are supposed to survive longer than their own inertial time scale,

even after the strain that originated them ceases to act. Otherwise, they could not

be considered more coherent that the background motion, and their dynamical
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Flow type 7/v (_,,,o./w' Pill Au/u'

Homog. isotropic turb. 260 8.9 3.1 3.5
Wall region of channel 100-300 4.6 4.3 3.9

Homogeneous shear 400-500 5.6 5.3 3.0

Plane mixing layer 340 20. 2.5 6.7

Rex = 60

Re_ = 100- 200

Rex = 95
Rex = 55

TABLE 1. Characteristic circulation associated to small scale vortices in various

types of flows. See Appendix I for detailed references and assumptions.

significance would be small. In fact, all the available observations indicate that

their lifetime is long.

It can easily be shown that the peak vorticity of a two dimensional axisymmetric,
unstrained, self similar vortex, diffusing under the effect of viscosity, decays by a
factor of two in a time

Re.yTE
r= 16r2 , (1)

where TE = 41r2p2/7 is the turnover time at the 1/e radius, p, or the core. Because

of the large denominator in (1), vortices with Re._ much smaller than 150 decay too
fast and would not be identified as coherent.

It is interesting that in all the cases that we have studied, the radius of the cores,
normalized with _/= (_'/v) 1/2, is of the order of 3-4. This is roughly the radius of

an equilibrium Burgers' vortex under a rate of strain O(wl), which can be expected
to be the average fluctuating rate of strain within the flow. While the estimation of

individual radii is subject to large uncertainties, the relative consistency of the values
in Table 1 makes it likely that the thickness of the cores is really the Kolmogorov

scale and that they axe Burgers' vortices. Note that as noted in Appendix I, the large
radii for the homogeneous shear flow is probably related to numerical resolution
effects.

In all the cases that we have studied, the peak vorticity at the axis of the cores

is several times higher than the r.m.s, vorticity for the flow field (Table 1). The

same is true for the characteristic velocity, Au = wm,.ffip, compared to the r.m.s.
velocity fluctuation for the flow considered as a whole. This means that the flow in

the immediate neighborhood of the vortices is dominated by them and is relatively
independent of the influence of other structures. We will show now that this can

be used to understand some of the alignment properties that have been reported in
recent years between the different velocity derivatives.

Alignment

It was first suggested by Kerr (1985) and shown later by Ashurst et al. (1987a)
that the vorticity in homogeneous turbulent flows is preferentially aligned with the

eigenvector corresponding to the intermediate eigenvalue of the rate of strain tensor,

S_j = (Oju_ + cg_uj)/2, especially at high values of the enstrophy. This was confirmed
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later in other flows, both in numerical simulations (Vincent & Meneguzzi, 1990) and

in laboratory experiments (Dracos et al., 1989 ). That observation was considered

surprising because the lagrangian vorticity equation can be written as

d_i/dt = Si_ + vV%.,i

and it had always been assumed that the vorticity vector would be stretched along

the direction of any eigenvector of the rate of strain tensor with a positive eigenvalue

and that it would eventually be aligned to the eigenvector of the most positive one.

In fact, the existence of tubes was also considered initially controversial because it
can be shown that the most probable state for the rate of strain tensor is to have

two extensional eigenvalues (Betchov, 1956), and it was felt that this should give

rise preferentially to vortex sheets.

That this is not necessarily so can be seen by considering two dimendonal vortices
and vortex sheets. In those cases, the vorticity is normal to the z - y plane and

generates a rate of strain tensor in which the only two non-zero eigenvalues are equal

in magnitude and opposite in sign, with eigenvectors normal to the vorticity. Thus

the vorticity is aligned with the eigenvector of the intermediate (zero) eigenvalue
and is not stretched by any of the other two. Since the picture that emerges from

the previous survey of experimental results, at least at high enstrophy values, is one

of elongated, essentially two dimensional, compact vortices, it is not surprising that
the rate of strain produced by them is normal to their axes and that it dominates

the rate of strain tensor, so that any residual eigenvector is, by the orthogonality

property, aligned to the vorticity. It is only the residual axial eigenvalue that does
the stretching or compression of the vortex tube, while the two equatorial ones are

just local effects of the vorticity and do not participate in its dynamics. Note that

this arrangement automatically satisfies the requirement that two eigenvalues of the
rate of strain tensor be positive, while being consistent with the observation of a

prevalence of tubes.

This interpretation is reinforced by Figure 1, which is adapted from (Ashurst et

al., 1987b) and which shows that the pressure gradient, conditioned on the angle
which it forms with each of the three eigenvectors, is maximum when it is aligned

to the intermediate one and 450 away from either the most compressive or extensive

eigenvector. It is easy to recognize in this arrangement the strain generated around
a two dimensional vortex, in which the pressure gradient is directed away from its

axis, while the two principal strains are normal to it and aligned 450 away from the

radial direction (Note that the interpretation of this figure in the original reference

is different from the one given here).

In a turbulent field, Figure 2 shows a section of a compact core taken normal to
its vorticity. The field corresponds to the head of a hairpin vortex in the simulation

of a homogeneous turbulent shear flow in (Rogers & Moin, 1987), which was one

of the flows used by (Ashurst et al., 1987ab). The figure also shows the eigenvec-

tors corresponding to the most compressive and to the most extensive eigenvalues,

projected on the plane of the section. It is clear that while outside the vortex the

orientations of the vectors are irregular, inside it they correspond essentially to that

of a simple plane shear.
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FIGURE 1. Averaged squared pressure gradients in a turbulent field, measured

along lines forming a given angle to each principal strain axis. Solid line: Angle
measured to most extensional eigenvector. Dotted: Most compressive. Dashed:

Intermediate. Adapted from (Ashurst et al., 1987b).

The argument can be made a little more general. Consider a vorticlty distribution,

_(x), which in some neighborhood can be written as

O(x) =  0(x)v0 + o(,o'), (2)

where bold-faced quantities are three dimensional vectors, vs is the unit vector along

the za axis, and us >>w'. Assume moreover that O_oo/Ozl and O_o/Oz2 are O(wo),

but note that the solenoidal character of the vorticity implies that 0_0/Ozs = 0(_).

We can express the velocity, u, in general as

4_" _ x)lS dSx ', (3)

plus a potential part which is independent of the vorticity and which will be assumed

to be O(to_). Differentiating with respect to zl, and integrating by parts we obtain

the velocity gradient as

0u_/0z_= 1 i 1-4--_ ix __-x, la [(x- x') x Ofl/Oa:_ ]._dSx ', (4)

plus small terms coming from the potential. It can be seen after some reflection that

the part of this deformation tensor that is O(a_0) is confined to the top 2 × 2 diagonal

submatrix. Under those conditions, the generic eigenvalue structure of the rate of

strain tensor is formed by two dominant eigenvalues, O(w0), whose eigenvectors
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FIGURE 2. Section normal to a strong vortex core in the turbulent field in (Rogers

& Moin, 1987). Dotted lines are isovorticity contours. Heavy arrowed lines are
most extensional eigenvectors, projected in the plane of the figure. Light lines,

without arrows, are most compres_ve eigenvectors. Eigenvectors are not scaled

with eigenvalues. Length variation is due solely to projection.

form at most a small angle O(w'/_a0) with the equatorial plane (zl, z_), and by

a third eigenvalue, O(_'), whose eigenvector is similarly aligned to va, and to the
dominant vorticity. The strain structure discussed above for a two dimensional

vortex is a particular case of this arrangement, but the argument is more general
and should apply to other situations. It is important to realize that equations (3-

4) are completdy kinematic and that the alignment of the strains with respect to

the vorticity is independent of the particular dynamical mechanism involved in the

generation of the vorticity concentration (2).

In particular, it was suggested in (Kerr, 1985a, Ashurst et al., 1987a), that the
alignment of the vorticity to the intermediate eigenvector is due to the tendency

of the vorticity vector to rotate in that direction as a consequence of the asymp-

totic behavior of the solutions of a truncated local approximation to the Navier

Stokes equations (Vieillefosse, 1982). While those equations might still be useful
in explaining the formation of the vorticity concentrations, the present discussion

suggests that the explanation of the alignment is simpler and that it is the rate
of strain tensor the one that rotates towards the vorticity once the latter becomes

strong enough.
The same model can be used to explain some of the quantitative information
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available on the magnitude of the strain eigenvalues at the points of maximum dis-

sipation, which has been measured from numerical simulations to be approximately

in the ratio (1:3:-4) (Ashurst et ai., 1987a). From the model that we have developed
here, we may visualize those structures as stretched vortices in which the straining

and the viscous diffusion are roughly in equilibrium. This would at least be true dur-

ing the formation stage, at which dissipation is maximum. It is shown in Appendix

II that the maximum rate of strain in those Burgers' vortices occurs in a annulus

surrounding the core, slightly outside the 1/e vorticity radius. This distribution has

been documented graphically in (Ruetsch & Maxey, 1991) for numerical isotropic
turbulence. It is also shown in the appendix that at the point of maximum rate of

strain, the ratio of the first two eigenvalues is _2/_1 = 0.012Re-r - 0.5, which for

Re. 1 ,_ 200 - 400, corresponding to the range of experimental values, vaxies between
(1:2:-3) and (1:4:-5). These values are in rough agreement with the numerical ones

quoted above, but they increase with vortex intensity. It would be interesting to

check whether flows with a larger spread in the measured values of w,n_=/w' also
have a larger value of the ratio of the principal strains, but the Reynolds numbers

of the present numerical simulations axe too low for that purpose.

Some of the data used for the phenomenological estimates were not contained

in the original papers and have been made kindly available by Drs. Moser and

Rogers for the purpose of this investigation. They also provided much of the data

processing software. Their help is warmly appreciated.
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Appendix I: Data processing for vortex circulations.

To compute circulations we have assumed that the vorticity distribution inside

the cores corresponds to that of a viscous axisymmetric vortex

=

It is easy to see that the total circulation of such distribution is

3' = _w-_-=ro2. (I.1)

The circulation is estimated using this formula, while w,na= is measured directly,

and r0 is defined by w(ro)/W,,_,= = e -I.

A.1. Homogeneous isotropic turbulence

We use data in (Ruetsch &_Maxey, 1991). Their cores are described as having a
2mean diameter of 617at an enstrophy level 9.5 < w+ >, while the maximum recorded

2enstrophy is given as 80 < w i >. Their mean diameter can then be used directly

to estimate r0, resulting in an approximate circulation for their cores of -y/v __ 250.

The aspect ratio of their vortices is given in the paper as L/D _ 6.

A.t. Wall region of turbulent channels

Kim, Moin & Moser (1987), in their analysis of their numerical simulations of
channel flow at Re_ : 180, introduce a "typical longitudinal eddy" whose vorticity

and diameter satisfy

,_+i_lui_ __ 0.13, u_Dli_ "" 30. (I.2)

They derive these parameters from the behavior of the w+= near the wall. The

resulting circulation is
= 90

Robinson (1989), using the same data set, publishes histograms of vortex diameters
and circulations. The mode and average value for the former are uTD/v _--25 and

35, while for the latter they are _f/iJ __ 60 and 160. Both analyses axe in rough

agreement.
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The values in (I.2) can be interpreted in a slightly more fundamental way. It is

usually accepted that the velocity scale in the wall region is the friction velocity,

uT : (v@ul//_y)_/_u (Tennekes & Lumley, 1972, ch. 5), _nd that the fundamental

structure in that region is a longitudinal velocity streak, whose width, W, satisfies

u_W/v __ 100 over a wide range of Reynolds numbers. It has also been shown

(Jim_nez & Moin, 1991), that each streak contains a single streamwise vortex,
and that the presence of the vortex is enough to generate most of the phenomena

associated with the streak (Orlandi & Jim_nez, 1991). Let us now interpret the

second half of (I.2) as D __ W/3. The first part can then be written in terms of the

velocity, vr, induced by the vortex at its periphery, as

v, = w=D/4 _- u_,. (I.3)

Such a simple relation raises the hope that the scalings in (I.2) hold independently
of Reynolds number, but a careful analysis of data both from minimal channels

at different Re_ (Jim_nez & Moin, 1991), and from the full size channel in (Kim,
Moin & Moser, 1987) show that, while the diameter of the strongest vortices scales

reasonably well in wall units as urD/u __ 20, their peak vortlcity and total circu-

lation increase almost linearly with Reynolds number, from 7/u _ 130 Re_ = 100,

to V/u ,,_ 270 at Re_ = 200 (Fig. 3). Note that the large error bars in the figure
are due as much to real statistical scatter in the data as to arbitrariness in the def-

inition of what really constitutes a vortex. This arbitrariness also explains in part
the difference between our values for the full channel data and those of Robinson

(1989). The criteria used here among different Reynolds numbers were, however,
held consistent and the trend is reliable.

A similar dependence of the near wall variables on the bulk Reynolds number was

documented in (Wei & Willmarth, 1989), where it was attributed to differences in

the stretching of the structures of the wall region by the outer flow.

The statistics for r.m.s, vorticlty near the wall are at present only available for

the (Kim, Moin & Moser, 1987) channel. In that case, 0J,_=/w' _ 4.6.

A.$. Homogeneous Jhear flow

We use data from (Rogers & Moin, 1987). That paper contains a numerical

simulation of a turbulent flow in a homogeneous shear, S, developing in time from
Re_ : 81, at t = 12, to Re_ : 97 at t = 18. Strong vortices appear as hairpins,

whose legs are initially aligned approximately with the direction of maximum aver-

age strain. Later they rotate to become more nearly streamwise and seem to reach

some sort of equilibrium. A possible estimate for the vortex diameter is the first
zero crossing of the vorticity autocorrelation function with respect to separations

normal to the plane defined by the hairpins, which results in D(S/u) 1/2 __ 2.8. A

visual inspection of the flow fields suggest a value closer to D(S/u) 1/2 __ 5.8, which

does not seem to change much as time progresses. This later value, however, is

close to three numerical mesh spacings, and should be used with care. As maxi-

mum vorticity we have used twice the author's estimate of three times the r.m.s.

vorticity of the flow. This was checked by visual inspection of the flow field at two
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FIGURE A. 1. Radius and circulation of strong streamwise of vortices in the near

wall region. Expressed in wall units.

different times in the evolution of the flow. As the turbulence becomes stronger,

the ma_mum vorticity increases from w/S ._ 15 to 19, but the ratio of w,_z to the

r.m.s, vorticity stay roughly constant (-._ 5.6). The resulting circulation varies from

7/v _ 400 to 500.
It should be emphasized that the whole simulation corresponds to a developing

stage of the flow and that the peak vorticity increases continuously, while the width
of the autocorrelation function does not show signs of decreasing. It appears that

the hairpins grow in intensity by accreting new vortex lines, rather than just by

stretching the existing ones.

A.4. Plane mizing layer

The data are taken from the numerical simulation of a plane, three dimensional

shear layer by Moser & Rogers (1991), and from some later simulations by the same
authors. Two fields are analyzed, one right before the second pairing (t = 40), and

another one right after it (t = 48). Both fields look visually turbulent, although the

outlines of the large spanwise vortex rollers are still apparent. Tubular vortices are

visible and, in the edges of the two dimensional rollers, seem to be associated to the
rib vortices that dominate the braid region at an earlier stage of the flow, especially

in the first field. In the center of the rollers, and in most of the second field, this

association cannot be made with any certainty. A characteristic vortex diameter

in both cases is D/6_o _- 0.20, where _o is the initial vorticity thickness of the

layer. The peak vorticity of the cores is wS_o/AU _-- 5.4 in the second field, and

slightly higher in the first one, but that difference decreases when one particularly

strong rib vortex pair is separated from the sample. The total circulation per core

is 7Iv _- 340.
The r.m.s, vorticlty at the center of the layer is w'6_o/AU _- 0.27, so that

w,naz/w' _ 20. This value is larger than in any of the other flows, which can

probably be explained by the large persistent strain induced by the two dimensional

spanwise rollers, as well as by the artificia_y lowered value of the r.m.s, due to large
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scale intermittency.
In the first field, the vorticity thickness of the layer is 6_ = 8.5, while in the

second it has grown to 10.0. Since the velocity difference across the layer is always

AU ----2, the peak vorticities of the cores are almost twenty five times larger than
the average shear across the layer AU/5_, but do not seem to scale directly with it.

Appendix II: Principal strains of a Burger's vortex

The vorticity distribution for an equilibrium Burgers' vortex, whose circulation

is vRe_, subject to an extensional axial rate of strain w = az, is (Batchelor, 1967)

_(r) = -Re_ e_a,, /4_
4_r

where r is the radial coordinate, and the vorticity vector is directed along the z

axis. The corresponding rate of strain tensor has three eigenvalues. The first one is

_0 = a, and its eigenvector is aligned with z. It corresponds to the driving strain.
The other two are

_r_- = a (-_ 4- _F(r/ro)) ,

where r0 -- 2(v/a) 1/2 is the 1/e radius of the vortex and

1 - (¢2 -b 1)e-_'

One of these eigenvalues is extensional, while the other is compressional, and their
eigenvectors are in the equatorial plane, oriented roughly q-450 away from the radial

direction. Their magnitude with respect to the driving strain can be characterized

by the ratio

F(r/ro ).m

2_r0

This quantity vanishes both at the center of the vortex and at infinity, where the

driving strain prevails, but has a maximum at r/r0 _ 1.339, where

(a+_ -__-)2a0 _ .012Re_.
mnz

Since this annular region is also where the energy dissipation,

= + + -) = + '

is maximum, this is the ratio that should be compared with the experimental results.



Center for _urbulenc_ ReJearch

Annual Research Briefs - 1991

yjPZy/
57

Scaling analysis of-energy
transfer in the inertial range

By Ye Zhou

1. Motivation and objectives

The classical Kolmogorov phenomenology of energy transfer still remains an im-

portant element in turbulence theory (Monin and Yaglom, 1975; Tennekes and Lum-

ley, 1972). Since all turbulence theories and models rely on assumptions about the

energy transfer process, attempts are being made to verify the underlying assump-
tions. Recently, direct numerical simulation (DNS) measurements (Domaradzkl

and Rogallo, 1990; Yeung and Brasseur, 1991) have suggested that energy is largely
transferred downscale locally, supporting a basic concept of the Kolmogorov phe-

nomenology that leads to the universal inertial subrange. However, these authors

concluded that the local energy transfer results from triad interactions that are

noniocal in the spectral k space.

The claim that local energy transfer results from nonlocal triadic interactions has

important consequences for turbulence theory. Indeed, it questions the validity of

the assumption of the statistical independence of the large- and small-scale motions

in the Kolmogorov universal theory of turbulence (Ohkitani and Kida, 1991). In a
low Reynolds number DNS, Yeung and Brasseur (1991) observed that anisotropy
is induced in the small scales by forcing in the large scale. Moreover, they argued

that such interactions will persist at high Reynolds numbers. The consequences of

their argument are clearly at variance with the classical hypothesis of a universal
isotropic structure at the small scales independent of the large-scale structure. In a

computation with an extended period of forcing, Yeung et al. (1991) recently found

that the small scale anisotropy eventually decreases at later time.

While we have no disagreement with these studies concerning the actual mea-
surement of the raw interaction statistics-- the triad nonlinear transfer T(k, p, q)--

we believe that T(k,p, q) is not the appropriate quantity one should use to deter-
mine whether the nonlinear interactions are local or not. Rather, we argue that

these raw interaction statistics should be viewed only as a mathematical building

block in the energy transfer process, and their physical interpretation requires fur-

ther summation, during which much cancellation occurs. Following a suggestion by

Kraichnan (1971), we have summed the measured raw band-band transfer interac-
tions in a way that directly indicates the scale disparity of contributions to the net

energy flux across the spectrum. We found that the net flux results primarily from

interactions in which the ratio of largest to smallest scale is less than 10. Similar

results have been found from the analysis of the net energy transfer. As a result, we

conclude that DNS measurements, in fact, lend support to the classical Kolmogorov

phenomenology of local interactions and local transfer in an inertial range.
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2. Accomplishments

?,.I. Prelimina_

We restrict our attention to the velocity field uo(k, t) that is a solution of the

incompressible Navler-Stokes equation

0

+ =

where Palj._( k ) = k#DaT( k ) +

force (f = 0 for the decaying case), and ue is the molecular viscosity.

The energy equation E(k) = ½1u(k)l2 is formulated as

yo(k,t), (1)

k_D,,,a(k), D,.,a(k ) = ,S,,,a - k,.,k_/k 2, .f is the external

0
[_ + 2vk2]E(k) = T(k) + F(k), (2)

where F(k) is the forcing spectrum and T(k) is the the energy transfer function. The

contribution to T(k) resulting from nonlinear interactions between wavenumbers in
band k and wavenumbers in bands p and q is denoted by T(k,p, q). The triad energy

transfer function T(k,p,q) is given by

1
T(k,p,q) = _ E Im[u*(k)Pa#.c(k)u#(p)u-c(q)], (3)

where the asterisk denotes a complex conjugate and _ denotes a summation over

shells in k, p, q subject to the triangle constraint. In turn, the triad energy transfer

function T(k,p,q) is related to T(k) as:

T(k)=ET(k,p,q).
P,q

(4)

Another important measurement for the energy transfer process is the energy flux

II(k) = fh dk'/ dpdqT(kW,p,q). (5)

In order to separate the local and nonlocal interactions, we introduce the param-
eter

rnaz(k', p, q)• = (6)
min(k',p, q)

which indicates directly the disparity of the interacting scales. This parameter has

been used to classify the interactions as local (s <_ 2) and nonlocal (s > 2) by

Lesieur (1987). Kraichnan (1971) introduced a different set of parameters (% w)

where v (v _< 1) is the ratio of the shortest to the middle leg and to is defined as

k'/p (1 < to < 1 +v). The pair (v, to) completely determines a unique triangle shape.

Using the test field model, Kraichnan (1971) calculated the energy transfer locality

function that gives the fraction of energy transfer due to triangles whose smallest
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leg is larger than v times the middle leg. Analysis of this function indicates that
65% of the transfer involves wavenumber triads in which the smallest wavenumber

is less than one-hail of the middle wavenumber.

The work of Kraichnan (1971) provided a theoretical framework in which one

can determine whether the nonlinear interactions are local or nonlocal. For a given

scale k, he argued that all raw interaction statistics must be summed such that

physical quantities contain only one parameter which indicates the scale disparity

of the interaction.

?,.?,. Analysis of the energy transfer function

We measure the individual contributions to T(k), characterized by the shape

parameter s

r(k) = (7a)

where

T(k,s) = E T(k,p,q) (7b)

p,ql,

is the partial sum of T(k,p,q), over all (p,q) at constant s. The key point here

is that the summation covers all interaction scales, subject to the triangle con-

straint, leaving only the dependence on scale disparity. This follows in spirit the

procedure described in Kraichnan (1971). This measure has several properties that

aid in its interpretation. First, as can be seen in Fig. 2, the contributions for

all , are of the same sign; there is no further cancellation in the sum (Ta). Sec-

ond, f dkT(k, ,) = 0; this follows immediately from the detailed energy balance of

T(k,p, q) and the invariance of ,(k, q,p) under permutation of its arguments. Note

thatf dkT(k,p, q) _ O. Fig. 1A shows the contributions T(k, ,) of each octave of,

to the total energy transfer T(k) for a simulated inertial range. The database was

generated by a large-eddy simulation (LES) with an eddy viscosity derived from

a stochastic equation that is consistent with EDQNM (Chasnov, 1990). Energy is

dissipated at high k by the eddy viscosity, and the numerically resolved transfer

T(k) is non-zero there as a result of this artifact. The energy is injected with a

forcing spectrum F(k) peaked about a wavenumber k0 _ 2, and a stationary state

above k = 8 is maintained in the Kolmogorov inertial range. Note that the energy

is removed from the energy containing region primarily by non]ocal interactions

(,>4).

The 30 < k < 65 region of Fig. 1A is enlarged in Fig. 1B to determine whether

local or nonlocal interactions are responsible for the increase of T(k) at a large k.

The major contributions to T(k) are those of local interactions (, _< 4), consistent

with cl_sical phenomenology. The nordocal interactions become nonzero at about

k = 55, eventually exceeding the local interactions at a very high k. This is an

artifact of the sharp numerical spectral truncation.
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FIGURE 1A. The numerically reso]ved transfer spectrum. The contributions

to total transfer from various interaction disparities are indicated. _ total,

.... 1< s < 2,----- 2 < a < 4,-----4 < s < 8, ........ s>8.
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FIGURE lB. The same as figure IA but enlarged for 30 < k < 65.

Recall that T(k,p, q) is a very smooth curve with a pair of positive and negative
peaks (Domaradzki and Rogallo, 1990). The results of our summing procedure

contain some statistical noise because of the high degree of cancelation among the
raw interaction statistics. The noise is most pronounced at small wave number
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.g

2*_Y
i

k

FIGURE 2. The numerically resolved flux spectrum. The contributions to total

flux from various interaction disparities are indicated. -- total, .... 1 < s < 2,

-----2 <s <4,-----4<s < 8, ........ s>8.

where the statistical sample is relatively small

,_.$. AnalyJiJ of the energp fluz function

It is desirable to measure the relative contribution of local and non]ocal inter-

actions to the energy flux as a function of k. Following (5), this is equivalent to

rewriting (7) in terms of the shape parameter s as:

n(k) = n(k,s). (7)
J

In the classical Kolmogorov inertial range, where injection is absent and dissipa-

tion is negligible, energy conservation implies that the energy flux is a constant.

Fig. 2 displays the energy flux and the contributions II(k, s) of the various scale

disparities. While the Kolmogorov phenomenology implies a constant energy flux

in the inertial range, our computed energy flux decreases at high values of/c because
we included only the numerically resolved-scales and omitted the flux due to the

subgrid-eddy viscosity. It is clear that the first and second octaves of s play a much
more important role than the higher octaves.

Fig. 3 illustrates that the normalized energy flux II(k, s)/II(k) is dominated by

local interactions (small shape parameter s) for all scales k. This closely resembles
the classical picture of the energy transfer process described in detail by Tennekes

and Lumley (1971). Moreover, the dependence upon the shape parameter is the
same for all inertial range scales, that is, beyond the forced scales, the normalized
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FIGURE 3. Dependence of energy flux upon the scale disparity of contributing
interactions. The various curves are for k -- 15, 20, ...,50. The statistical noise is
associated with the lower wavenumbers.

individual energy flux contributions II(k, s)/II(k) are essentially independent of k

as would be expected in a scale-similar inertial range.

Using the detailed conservation property of T(k,p,q), the energy flux through
scale k can be divided into two parts:

where

rr(k) = n'(k) + n'(k)

n'(k)=_°°ak' fo'ap f'aqT(k',p,q),

(9)

(I0)

and

IIe(k)=2 fh°*dk' fokdp fk°°dqT(k',p,q). (11)

It should noted that II'(k) and IIe(k) correspond to II+(k) and -II-(k), respec-
tively, in Kraichnan (1971).

There axe two types of non-local contributions to the energy flux resulting from

distinct physical mechanisms: (1) when one of the wave vectors [say p] in II*(k) is

at very low wavenumber while the other [say q] _ k, II°(k) is closely related to the

classical energy transfer closure model proposed by Obukhov (Monin and Yaglom,

1975; Batchelor, 1953) where the strain due to the large scales causes local energy
transfer among the small scales, (2) when k' is very small while p, q >> k', IF(k) is

closely related to the classical eddy viscosity closure model proposed by Heisenberg

(Monin and Yaglom, 1975; Batchelor, 1953). We calculate IIe(k,s), H°(k,s) by
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FIGURE 4A. The energy flux of the straining interactions. --
s < 2,----- 2 < s < 4,----- 4 < s < 8, ........ s>8.
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FIGURE 4B. The energy flux of the eddy-viscosity interactions.

.... 1 < s < 2,-----2 < s < 4,-----4 < s < 8, ........ s>8.

1<

-- total,

partial summation of (1O) and (11) in the same manner as before. From Figs. 4A

and 4B, we see that for both terms in (9), the local interactions are more important

than the nonlocal ones. This is in agreement with the classical phenomenology of

the inertial subrange and our T(k, s) measurements.
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FIGURE 5. Comparison of the straining and eddy viscosity types of interactions.

straining type, ........ eddy viscosity type.

The relative importance of the straining and eddy-viscosity interactions is com-

pared in Fig. 5. While the two types of interactions are of similar magnitude at

low wavenumbers, the straining interactions dominate at high wavenumber. The

recursive renormalization group analysis (Zhou et al., 1988; 1989), and numerical

measurements (Zhou, 1991) identified these interactions as the source of the cusp

in the spectral eddy viscosity in Kraichnan's (1976) formulation. However, we must
stress that the dominance of the straining interactions at high k is an artifact of

the sharp spectral-cutoff that is used analytically in RNG and numerically in our

present measurement. Indeed, one would expect that the relative physical contri-

butions of the eddy-viscosity and straining interactions in an inertial range would

be invariant with k, as we found for the disparity contributions (see Fig. 3).
=

_._. ,.qurnmaPy

This work addresses a fundamental question regarding the energy transfer process.

At issue is the appropriate choice of a statistical quantity to indicate the nature of

energy transfer across the spectrum. Basically the problem is that the system is

conservative, with T(k) < 0 for small k and T(k) > 0 for large k, but since we
cannot atag" energy, we can not follow its "flow". Our investigation indicates that

although the quantity measured by cited papers is a mathematical building block in

the energy transfer process, it is not the appropriate physical quantity one should
use to determine whether the nonlinear interactions are local or nonlocal. With

the use of an existing DNS flow database, we have clarified these issues by making

measurements of quantities that directly reflect the actual scale disparity of the

interactions contributingto the energy transfer process. We found that the net flux

results primarily from interactions in which the ratio of largest to smallest scale is
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less than 10.

3. Future plans

3.1 DNS analydJ of the scaling and statistics

We now have a fairly good indication that local energy transfer results from rela-

tively local interactions. The next step would be to refine the analysis using larger

interaction samples (2563 or larger flow fields). We also will use the interaction

count, which we have already computed, to account for the loss of interacting triads

near the sharp spectral cutoff. We believe that this would aridin understanding the
energy transfer process by reducing the statistical noise and increasing the range

of scales. We would like to also use the larger fields for other measurements of
turbulence statistics.

3._. Numerical RNG procedure

The RNG theory results from an attempt to solve the forced Navier-Stokes equa-
tions in frequency-wavenumber space by an analytical iterative scheme. Due to the

analytical complexity, the iteration process is carried out for only one step, and

some terms that arise are discarded. The goal of this part of the plan is to attempt

to use a numerical rather than an analytic evaluation of the convolution integrals,

thus retaining all of the terms, and to evaluate the errors in the analytical theory.

This is an ambitious project because it discards the advantage of time marching
and treats the time dimension in frequency space in a manner analogous to the

previous treatment of the spatial dimensions in wavenumber space. This has the

obvious disadvantage of requiring an additional dimension of storage and forces us

to use relatively coarse naeshes, but offers the compensating advantage of provid-

ing the entire time history for post-processing. To our knowledge, the explicit use
of frequency space in fluid dynamics simulations has never been attempted before.

This work will not only extend our current DNS of the Navier-Stokes equation into a

new dimension but also make a careful test of the RNG theory (¥akhot and Orszag,
1986; Zhou et al., 1989) possible.
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Lagrangian velocity correlation and spectrum
in homogeneous isotropic turbulence

By T. Gotoh I R. S. Rogallo 2 AND J. R,. Herring 3
# r-_.

The Lagrangian velocity correlation and its spectrum are computed by direct nu-
merical simulation (DNS) using the passive vector method (PVM), and the validity

of the method is studied. It is found that the PVM is accurate when Kmaz/kd >_ 2
where K,_® is the maximum wavenumber carried in the simulation _--_- ]_-_is the

Kolmogorov wavenumber. The Eulerian and Lagrangian velocity correlations-for
various wavenumber bands are compared. At moderate to high wavenumber, the

Eulerian velocity correlation decays faster than the Lagrangian, and the effect of

sweep on the former is observed. The time scale of the Eulerlan correlation is found

to be (kU0) -1 and that of the Lagrangian to be (f? p2E(p)dpyl?2; The Marko-
vianized Lagrangian renormalized approximation (_)]s com-pared to the DNS,

and good agreement is found for one-time quantities in decaying turbulence at low
Reynolds numbers and for the Lagrangian velocity autocorrelation in steady turbu-

lence at moderate Reynolds number. The effect of intermlttency on the Lagrangian
correlation is discussed.

1. Introduction

---- The turbulent diffusion process is expressed naturally in terms of the Lagrangian

..... velocity correlation, but the Lagrangian correlation is difficult to obtaijn from exper-

iments or numerical simulations, whereas the Eulerian velocity correlation is easily

obtained. Lagrangian information has traditionally been obtained from numerical
simulations by tracking fluid particles which are released in the turbulent flow

(¥eung & Pope 1988, 1989 and Squires & Eaton 1991). On the other hand, Kaneda

& Gotoh (1991) and Gotoh & Kaneda (1991) proposed that the Lagrangian cor-
relations be computed directly from initial velocity data that is carried within the

Eulerian computation as a passive vector field with zero diffusivity. T_e Lagrangian
velocity correlation is then simply the correlation between the current (Eulerian)

velocity field and the passive vector (initial velocity) field. Since the etbsence of dlf-

fusivity in the passive-vector transport equation allows large gradients to develop in
the passive vector field, accurate resolution at high wavenumbers is rapidly lost, and

a k 2 equilibrium spectrum is formed there. Nevertheless the Lagrangian correlation

can be accurately computed by the DNS provided that the passive Vector is ade-

quately resolved, and we have determined the resolution requirement empirically.

1 Permanent address: Department of Systems Engineering, Nagoya Institute of Technology,

Japan

2 NASA Ames Research Center, Moffett Field, Cs]ifornia, 94035, U.S.A.

3 Nations] Center for Atmospheric Research, P.O.Box 3000, Boulder, Colorado 80307, U.S.A.
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Yeung & Pope (1988) investigated the accuracy of a passive vector method in which

the passive vector carried was the fluid-particle displacement from its initial posi-
tion rather than its initial velocity. The resulting particle displacements would then

have been used to calculate the initial particle velocities by interpolation within

the initial velocity field, but the method was abandoned after it was found that

the root-mean-square particle displacement error, for a specified set of particles,

was much larger than that of the particle-tracking method. The error results not
only from the effect of zero diffusivity but also from the interpolation required to

evaluate the displacement of specified particles. While the numerical error resulting
from the lack of dlffusivity also contaminates the method used here, all interpola-
tion is avoided by carrying the initial velocity itself as the passive vector field and

by allowing the set of particles to vary with time.

There has been some controversy about the time scaling of the Eulerian and

Lagrangian two-point two-time correlations and, in particular, about the sweeping
effect that the large scale motion imposes on the Eulerian correlation at small

scales (McComb & Shanmugasundaram 1984, Yakhot & Orszag 1986, Dannevik

1987, Yakhot et al. 1989, Chen & Kraichnan 1989). Resolution of this matter has

been hindered by the lack of direct comparisons of the two correlations for given
wavenumbers (Comte-Bellot & Corrsin 1971). Computation of the Lagrangian two-

point two-time correlations allows us to compare the decay of the Eulerian and

Lagrangian correlations for given wavenumbers and to examine their time scaling.

The comparison confirms that at low to moderate Reynolds numbers, the decay of
the Eulerian correlation at small scale is dominated by large-scale sweeping, with a

time scale of (kU0) -I , while the Lagrangian correlation is dominated by strain and

has a time scale of (fo k p2E(p)dp)-l/2.

Although one-time quantities, such as the energy spectrum, predicted by the sta-

tistical theories of turbulence have often been compared to data from DNS and/or
experiments (eg. Gotoh et al. 1988), there have been far fewer comparisons of two-

time quantities. We shall compare two-time correlations predicted by the MLKA

theory (Kaneda 1981, Gotoh et al. 1988) with the DNS data. In steady turbulence

at moderate Reynolds number, the one-point Lagrangian correlation predicted by

the MLRA is in good agreement with the DNS. Intermittency effects will be illus-

trated by a short-time analysis of the correlation.

2. Basic equations

We assume that the Eulerian velocity u(x, t) and pressure p(x, t) obey the Navier-
Stokes equation for an incompressible fluid of unit density

0

+ = t)+.A.(x,t), (2.1)

V. u(x,t)= 0, (2.2)

where v isthe kinematicviscosity.A generalizedvelocityfieldv(x,slt) isdefined

(Kraichnan 1965)as the velocityattime tofthefluidparticlethatwas atx at time
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s. Note that v(x, lit ) = u(x, t). The evolution of the velocity v(x, slt ) with respect
to the labeling lime s is governed by the labeling time transformation

8

{_ + u(x,s) • V}v(x, alt ) = 0. (2.3)

The Lagrangian velocity auto-correlation RL of a fluid particle that was at posi-

tion x at time to is defined by

RL(X, tolt,,) =< v(x, tolt)v(x, tol,) >, (2.4)

where <> denotes the ensemble average. If the turbulence is statistically homo-

geneous, RL is independent of x and to by the invariance properties of v(x, slt)

(Kraichnan 1965), and

RL(t,s) -- RL(x, tolt, s) = V < v(x, tolt)v(x, tols) > dx

1/.V

1
=vf 

< v(x, slt)v(x, sls) > dx

< u(x,t)v(x, tls) > dx,

(2.5)

3. The Lagrangian Spectrum in the PVM and its contamination

We define three spectra as follows;

ui(x,t)ui(x',t) > = f < ui(k,t)u_(k,t) > exp(-ik(x- x'))dk<

= E(k,t)sinkr/kr dk, r = Ix- x'l, (3.1)

< v_(x, tls)v_(x',tls) > = f < vi(k, tls)vT(k, tl s) > exp(-ik(x xt))dk

i"= Ev(k, tl.) sin k,-/k, dk, (3.2)

< ,_(_,tl,,_(x',tl.) > = f < ,.(k,t)_(k, tl.) > exp(-ik(x xl))dk

= EL(k,tls)sinkr/kr dk, (3.3)

(for the derivation of (2.5), see Kaneda & Gotoh, 1991). This equation shows that
if the turbulence is homogeneous, the Lagrangian velocity auto-correlation RL(t, s)

can be obtained in terms of the Euledan field u(x,t) (obtained by solving (2.1)

and (2.2)) and the passive vector field v(x, tls ) (obtained by solving (2.3) with the

initial condition v(x, sis) = u(x, s)). In this article, we refer to the calculation of
RL using (2.5) as the passive vector method (Kaneda _ Gotoh 1991, and Gotoh _:

Kaneda 1991).
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where the summation convention is used, homogeneity and isotropy of the turbu-

lence are assumed, and * denotes complex conjugate. The first spectrum is the usual

Eulerian energy spectrum, the second is the passive vector spectrum, and the third

is the Lagranglan correlation spectrum. Note that the three spectra are identical
at t =s.

Suppose that the velocity field u is computed from t = 0, and at time s we ini-
tialize the passive vector field v = u and compute Ep and EL as well as E for later

times. Suppose also that we have infinite resolution, that is, the maximum resolved

wavenumber K,n_= is infinite. Then the passive vector spectrum Ep(k,tls ) will
form a viscous-convective k -] range (Batchelor 1959, Kraichnan 1968) with an ever

increasing width as (t - s) increases. What will happen when the numerical resolu-
tion is finite, say K,n_z = 2kd? Until El, becomes significant at the computational

boundary K,_, the evolution of El, is identical to that for infinite K,,_,=, and there

is no contamination in Ep. Eventually the error at Ep(K,_z) builds and propa-

gates to lower wavenumber. The time td at which Ep(K,,_=) becomes significant is
given roughly by the Kolmogorov time scale td = (e/v) -1/2 (Batchelor 1959, Kraich-

nan 1968), and the contamination will reach the lower bands at kd at t - s _ 2td.

Now consider the evolution of EL(k, t[s). The quantity < ui(k,t)v_(k,t[s) > may
be written as

< ui(k,t)v_(k, tls) > =< lu,(k,t)llvT(k, tl_)l _b_(k, tls)}] >,

(no summation)

where _'(k,t) and _b_(k, tl8 ) are the phases of the Fourier components u(k,t) and

v(k, tls), respectively. This implies that the magnitude of < u_(k,t)v_(k,t[s) > is
roughly proportional to _/E(k, t)Ep(k, tls)/4_rk 2. When td <_t--s <_ 2td, Ep(k, tls )

for kd <_ k _ K,n_z is at most of order k 2, and for k __ /Cd is the same as it

would be for the infinite K,,_ffi. Therefore the error in RL caused by contamination

of EL at high wavenumbers is very small provided that E(k,t) falls off rapidly
at wavenumbers higher than kd (meaning that the velocity field u remains well

resolved). The above argument considers only the magnitude, thus it gives the upper

bound of contamination of EL. If K,,_az = kd, the contamination and decay of the
correlation occur simultaneously after t = s, and the effect of finite K,naffi becomes

serious if the kinetic energy spectrum is broad. The requirement for accuracy of

the PVM is thus K,,_=/kd _> 2 and is much more severe than that of Yeung and

Pope (1988) who found the condition for accuracy of the particle tracking method

(using cubic-spline interpolation) to be Kma=/kd __ 1.

4. Computation of RL for decaying turbulence

To test the validity of the PVM, we computed RL in decaying turbulence for two

types of initial spectra:

spectrum A

E(k) = 32(2/Tr)]/2u]k;Sk" exp[-2(k/kp)2], uo = 1 and k, = 4.75, (4.1)
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Run time v E fl RA kd K, naffi

DNS MLRA DNS MLRA DNS MLRA DNS MLRA

CRAY

A t=0 .01187 3.0 3.0 84.9 84.9 35.4 35.4 27.9 27.9

s=0.861.01187 1.23 1.19 58.9 57.1 17.4 17.0 25.4 25.2

15, 30, 60

15, 30, 60

INTEL

AH t=0

BH

SH °

.01187 3.0 3.0 84.9 84.9 35.4 35.4 27.9 27.9

s=l.16 .01187 0.872 0.848 38.5 35.3 15.3 15.5 22.9 22.4

t=0 .01 2.93 2.87 162 162 29.7 29.1 35.7 35.7

s=0.667 .01 1.52 1.45 63.0 63.8 24.7 23.4 28.2 28.3

.01 13.0 13.0 1330 1420 46.1 44.5 60.4 61.4

6O

60

30, 60

30, 60

60

Table 1. Numerical data for DNS and MLRA

* The values of DNS are averages over the time span 0 _< t - s < 0.586.

spectrum B

E(k) = 3u]k;2kexp[-k/kp], u0 = 1 mad kp = 3.0. (4.2)

The various numerical data are summarized in table 1. In the DNS, the Navier

Stokes equation is solved by a pseudospectral method in which wave-space trunca-

tion and phase shifting are used to remove the aliasing error (Rogallo 1981). The

computations were begun on a Cray YMP and subsequently moved to an Intel

Gamma (Hypercube) parallel machine. The time advance used on the Cray was

fourth-order Runge-Kutta, and second-order Runge-Kutta was used on the Intel.

Figures 1 to 4 display the one-time data for runs with K,_= = 60. The Kol-

mogorov wavenumber kd at time s is 25.4 and 28.2 respectively, so that the velocity

fields axe well resolved. Figures 1 and 2 show the decay of total enstrophy for

spectra A and B respectively. The dotted curves indicate the evolution for linear

(viscous) decay. The spectra at time s are presented in figures 3 and 4.

The octave-band Lagrangian correlations and their partial sums are defined as

< ui(k,t)vT(k, tls) >

=

rnin[21 + t ,K,,,,]
__, < ui(k,t)vT(k, tls) >

jE(t)E(s) ' (4.4)

V.,ni,_[2'+l,K..o] The correlation R_ provides a measure of the phasewhere _oct _- _-_k=2z
--I

error for each wavenumber hand, while the partial sum RL indicates the numerical
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0o _ _0
t

FIGURE 1. Evolution of the total enstrophy for run A.
MLRA, o DNS, ........ Linear decay.

oq
o.o _ _o L5

t

FIGURE 2. Evolution of the total enstrophy for run BH.

-- MLRA, o DNS, ........ Linear decay.

convergence of the contributions of the wavenumber bands to the total correlation.
The accuracy of the PVM is examined as follows. Compute the velocity field u(x, t)

with K,,_a, = 60 from t = 0 to t = 8 when the turbulence is fully developed.

For times t > s compute R_(t,s) and R_(t,s) by the PVM for several different

numerical resolutions K,na=. Figures 5 to 8 show R_(t,s) and R_(t,s) for runs

A and B respectively. The accuracy requirement for the PVM, K,,_=/k_ __ 2, is

satisfied in runs A and BH since kd at time s is 25.4 and 28.2 respectively. It should

he noted that the runs with K,,_= : 30, in which K,,_a,/kd = 1.18 for run A and

1.06 for run BH, yield almost the same results as those having K,,_, : 60. For the
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q_

k

FIGURE 3. Comparison of the energy spectrum at s = 0.861 for run A.

-- MLRA, o DNS.

'°i \

k

FIGURE 4. Comparison of the energy spectrum at s = 0.667 for run BH.

-- MLRA, o DNS.

one-point Lagrangian correlation RL(t, s), even run A with Kin,, -- 15 : 0.59ka is

satisfactory when compared to that of K=_, = 60 (see figure 6) because RL(t, s) is

dominated by the energy containing scales 1 < k < 8 which contribute about 80%
of the total correlation at time s. The decorrelation time t_ at time s is about 0.13

for both runs A and BH and is seen to be shorter, roughly by a factor 2, than the

decay time of R_(t, 8) for the highest octave band 32 _< k <__60 (figures 5 and 7).

This is consistent with the rapid decay of total enstrophy.

Figures 9 and 10 present the evolution of Ep(k, tl8 ) and EL(k, t]s) respectively for

run BH. In figure 10 data is omitted for wavenumbers where RL(k, t, s) is less than

0.05 to remove the statistical fluctuation. The passive vector spectrum Ep(k,tls )
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g-

_0 d_ _0 h /0 /5
t-s

_L0

FIGURE 5. Lagrangian correlation within octave bands for run A. The uppermost
curve corresponds to the lowest octave and the correlation decreases monotonically
for successive octaves.

-- K,_,,_ = 60, ........ K,,_,,, - 30, ,, K,,_a, = 15.

g-

d

0.0 05 tO L5 2O Z5 50

t--s

FIGURE 6. Contribution of octave bands to RL(t, s) for different K,,_z for run A.
The lowermost curve corresponds to the lowest octave, and the partial sum increases

monotonically with the addition of successive octaves.
-- K,,,_. = 60, ........ K,_,_. = 30, " K,.,,. = 15.

near K,_ffi increases with time t - s and for the band 10 _< k _< 20 becomes

approximately k -1 for a period of time during which EL(k,tl8 ) decays rapidly in

the high wavenumber range.

5. Comparison of the Lagrangian and Eulerian correlation spectra

There have been previous investigations of the time scaling of the Eulerian and
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FIGURE 7. The same as in figure 5 but for run BH.
K,,,,z = 60, ........ K,,_,_ = 30.

2.

t--s

q.

FIGURE 8. The same as in figure 6 but for run BH.

K,,_z = 60, ........ K,,,_ffi = 30.

_0

Lagrangian two-point two-time correlations, but there seems to remain some con-

troversy, especially about the sweeping effect in the Eulerian correlation (McComb

& Shanmugasundaram 1984, Yakhot & Orszag 1986, Dannevik 1987, Yakhot et al.

1989, Chen & Kraichnan 1989). Since one reason for the dispute seems to be the
lack of appropriate data, it is very useful and interesting to compare the Eulerlan

and Lagranglan correlations at various spatial scales.

Figures 11 and 12 compare the decay of the Eulerian and Lagrangian correlations
within octave bands for DNS runs A and BH, respectively. The Eulerian correlation

is defined similarly to (4.3). In spite of the low Reynolds numbers, the Eulerian

correlations for bands k _> 2 decay faster than the Lagrangian, while the Eulerian
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........ .......
k

FIGURE 9.
run BH.

Evolution of the passive vector energy spectrum after s = 0.6674 for

k

FIGURE 10. Evolution of Lagranglan spectrum after s = 0.6674 for run BH.

correlation for the band 1 < k < 2 decays slower than the Lagrangian. Similar

results are found for steady turbulence (forced run SH at Rx = 46, figure not

shown). This suggests that sweeping by large scales dominates the decay of the

Eulerian correlation at small scales irrespective of Reynolds number.

Figures 13 and 14 present the time-scaled evolution of the Eulerian and La-
grangian correlations from run SH for several wavenumbers. The collapse of the

curves is satisfactory, and a similar collapse is found for runs A and BH (figures

not shown). The Eulerian characteristic time is rE = (kU0) -1, the sweeping time

of scale k -1 by the velocity intensity U0. The Lagrangian characteristic time is

rL = {f: dpp2E(p,t)} -_/2, the time for deformation of scale k -I by all larger
scales.



Lagrangian eelocity correlation 7_

_o

0

O_o0000O 0
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FIGURE 11. Comparison of decay of RL(t,s) and RE(t,n) for run A. Octave

bands are 2 n <_ k <_ 2'_+a,n =O,...,4 and 32 < k < 60 from the uppermost llne,
respectively. _ Rn(t,s), o RE(t,s).

7.
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FIGURE 12. The same as in figure 11 but for run BH.

6. Comparison with the two-point closure theory

The LRA (Lagrangian Renormalized Approximation, Kaneda 1981) and the

MLRA (Markovianized LRA) are Galilean invariant closures that give a k -s/3

inertial-range spectrum and contain no adjustable parameters, hut which axe much

simpler than the LHDIA closure of Kraichnan (1965). The predictions of the LRA

and MLRA agree well with DNS results, especially the MLRA which satisfies the

requirement of reallzability (Gotoh, et al. 1988). The LRA and MLRA derivations
and their equations are found in Kaneda (1981) and Gotoh et al. (1988). In what

follows, we shall compare the MLRA and DNS results.

For the one-time quantities (figures 1 to 4), the agreement of the MLRA with
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g.

_o _ _ _o _o do do

k ro(t)(t - ,)

FIGURE 13. Time-scaled Eulerian correlations for bands k = 2 + 5n,

n = 1,..., 11 for run SH. Uo : v/E-/3.

{fo k dpp2E(p,t)}]/2(t - s)

20_

FIGURE 14. Time-scaled Lagrangian correlations for bands k = 2 + 5n,
n = 1...11 for run SH.

the DNS is satisfactory. Figures 15 and 16 show the comparison of the one-point
Lagrangian correlation defined by

Rb_"rt s) : Ek < ui(k,t)vT(k, tls) >L k_ E(,) (6.1)

Natal

where _k = _ , for runs A and BH, respectively.
k=l

The agreement between the MLRA and DNS for this two-time correlation is not

as good as that for the one-time quantities. The difference seems to be due in part
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FIGURE 15. Comparison of the MLRA and the DNS for the Rb_'e(t, s) for run A.

-- MLRA, o DNS. s = 0.86077.
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FIGURE 16. The same as in figure 15 but for run BH. s = 0.6674.

to the low values of Rx. The effect of intermittency is discussed in the next section.

To see the effect of the Reynolds number and to remove the direct effect of energy

decay, we carried out a DNS of steady turbulence in which forcing was provided by

the addition of an instability term to the Navier Stokes equation,

0
(-_ + vk 2 - a(k,t))ui(k,t) = Mizm(k) E U,(p,t)Ura(q,t). (6.2)

k=p+q

c(t), for 4 < k < 8; (6.3)a(k, t) = O, otherwise.
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The coefficient c(t) is determined such that 7 = kd(t)/K,,,, = (e(t)/us)'/'/K,n,ffi
remains constant throughout the computation. The energy balance gives

c(t) = 2v fo k2E(k,t) dk _ e(t) - u3(TK"_*=)" (6.4)
2 f_ E(k,t)dk - 2 f_ E(k,t)dk - 2 f_ E(k,t)dk"

In a steady state, c(t) is statistically constant in time, with a very small deviation.
The criterion for the accuracy of the PVM requires 3" < 0.5, but we were limited

by computer capacity to 3' = 1 because we desired both that the Reynolds number

be large and that the forced wavenumber band be high enough (4 _< k _< 8) to
avoid large fluctuations due to a small number of forced modes. Recall that in

the decaying runs A and BH the one-point Lagrangian correlations computed with

3' _ 1 are not appreciably different from those computed with 3"_< 0.5 (K,,_® = 60).
In the MLRA computation for run SH only the response equation was solved, using
the (steady) energy spectrum from the DNS. Note that MLRA is equivalent to LRA
when the turbulence is steady.

Figure 17 shows the energy spectra of DNS run SH and the averaged spectrum
used in the MLRA calculation. The Reynolds number Rx is about 46 in the DNS

and kd = 60.4 as expected. In figure 18, which compares RL from the MLKA and

DNS, we have compensated for the small difference in the total enstrophy between

the DNS and MLRA by normalizing time by the root of the total enstrophy. The

agreement seems satisfactory and suggests that the MLRA would yield a good
prediction for the Lagrangian correlation at high Reynolds numbers.

7. Effects of intermittency

To investigate the reason for the relatively poor prediction of RL(t, s) by the
MLRA in the low-Reynolds-number-decay runs A and BH, a small time analysis of

the Lagrangian correlation is useful. Taylor expansion of RL(t, s) at t = s gives

1

RL(t,s) = Co + Cl(t- s) + _C2(t- s) _ +.-..

Whenu=0, C1 =0and

(7.:)

:/C2 = V < uj,i(x,s)ul,j(x,s)G(x - y)ut,m(y,s)Umd(y,s) > dy, (7.2)

where G is the Green's function of the Laplace operator. The curvature C2 depends

on fourth-order moments of the velocity derivatives. The MLRA uses the nearly-
Gaussian assumption for the velocity fields so that the fourth-order moments are

expressed in terms of second-order moments. Three values of the curvature of Rr.

at t = s are presented in table 2: a) C_ Ns, computed by DNS with zero viscosity

from the fully developed turbulence field, b) -_NS, computed by DNS with zero

viscosity from a gaussian turbulence field (with the same energy spectrum as that
for cDNS), and c) CMLR'4, computed by the MLRA.
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k

FIGURE 17. Energy spectrum for run SH. The spectra from the DNS are shown

at 200 step intervals during the time span of RL(t - s). o DNS, and _ the

spectrum used in the MLRA (time averaged DNS energy spectrum).

%-.

©

_. o

-

FIGURE 18.

o DNS.
Comparison of RL(t,s) for the MLRA and DNS. MLRA,

Run time cDN$ -_DNS c2MLRA

AH s=l.16 4.33 3.17 2.69

BH s:0.667 9.76 7.11 6.61

TaMe 2. Curvature of RL at t ---- 8 from DNS and MLRA,
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FIGURE 19. The PDF of Y 2 2= - < > at t = ,.
----- run AH(t = 6t), .... run BH, ----- run SH, ........ Oaussian.

MLRA,

It is found that cMLRA/C DN$ ---- 0.62 for run A and 0.67 for run BH, while

CMLRA/-C_ Ns = 0.84 for run A and 0.93 for run BH. The latter two values differ

from unity in spite of the fact that the MLRA and DNS velocity fields both have
random phases and Gaussian statistics. This is due to the difference between the

energy spectra (more precisely, k2E(k, 8)) of the MLRA and DNS at t = 8 and to

the use of zero viscosity in the DNS. Values of C DN$ larger than Gaussian values
imply int¢_ttency of the velocity gradients. In fact, the PI)F of the transverse

velocity gradient is not Gaussian (figures not shown) as found in recent studies (She
et al. 1988). Equation (7.2) implies that the curvature C_ depends on the statistics

of S(x) - uj,i(X)uij(x) rather than the transverse velocity gradient itself and is

related to the nonlinear coupling through the pressure term of the Navier Stokes

equation. Figure 19 shows the PDF of Y = S- < S > for runs A (t = 5t and s),
BH (t = s) and SH (t : 8). The PDF's are non Gaussian and skewed. It should be

noted that for small Y the three PDF's at t = s are nearly equal.

Since the Reynolds numbers for runs A and BH are relatively low, the inertial and

dissipation ranges are not separated, and the intermittency effect observed in the

Lagrangian curvature C2 is a mixture of the intermittencies in both ranges, but it is

dominated by that of the dissipation range. It should be noted that the integrand
of (7.2) contains the Green's function for the Lapl_ian operator, thus the contri-

butions to (72 would have a peak between the energy containing and dissipation

ranges when the Reynolds number is sufficiently high, and the intermittency effect

on C2 would be primarily that of the inertiM range with a smaller contribution from

the dissipation range (She et al. 1988). At high Reynolds number, we expect the

MLRA to give a better prediction for RL, but the values for run SH (Rx = 46) are

already in reasonable agreement with the DNS.
It is surprising that for runs A and BH the one-time statistics from the MLRA

are in good agreement with the DNS while the two-time quantities are not. Poor
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prediction of RL(t,8) suggests poor values of Lagrangian covariances such as

< ui(k, t)v_(k, t[s) > that appear in the expression for the energy transfer function
and that, in turn, would suggest poor prediction of one-time quantities such as total

energy, energy spectrum, etc. There are several possible solutions to this paradox:
first, at low Reynolds number, the energy transfer may be relatively unimportant

for t > s, and second , the nonlinear coupling of the Navler Stokes equation is
insensitive to the detail of the Lagrangian covariance for the energy transfer. In

order to get more insight into this robustness in the energy transfer, it would be

necessary and interesting to examine the Lagrangian correlation spectrum for each

wavenumber. However, the two-point Lagrangian correlations from the PVM do not

correspond to those of the MLRA but rather to those of the ALHDIA (Kraichnan

1965, 1966).

8. Discussion

The passive vector method in 3-D homogeneous isotropic turbulence can be
used to compute the Lagrangian velocity auto-correlation function RL as well as

its spectrum. However, the numerical resolution requirement for its accuracy,

K,,_a=/kd >_ 2, is much more severe than that, K,n,z/kd >_ 1, of the particle tracking
method. The PVM is very expensive because carrying a passive vector in the com-

putation while doubling K,_,z requires roughly 2s x 2 = 16 times more memory and

32 times more cpu time than that needed to compute the velocity field alone versus

less than two times more for the particle tracking method. On the other hand, the

PVM has a much larger sample of particles and gives direct access to two-point

two-time correlations. In addition, the implementation of the method is trivial

when compared to particle tracking, especially on the new generation of parallel
computers that utilize distributed memory. The Lagrangian correlation spectrum

can be used to study the time scales associated with small scales. In fact, the Eu-

lerian and Lagrangian time scales are found to be (kU0)-I and (fo_ p2 E(p)dp)-a/_,

respectively. Thus the sweeping effect by the large scale motion dominates the

decorrelation of the Eulerian correlation at high wavenumbers.

It is found that at moderate Reynolds number the MLRA is more accurate than

LRA in predicting one-time quantities and one-point Lagrangian correlations.

The intermlttency in the dissipation range increases the curvature of the La-

grangian correlation and increases the rate of decay of the correlation when the

Reynolds number is low. When the Reynolds number is high, the separation be-

tween the dissipation and inertial ranges becomes wider and the range of scales con-
trlbuting to the curvature shifts to lower wavenumber, suggesting that the MLRA

should then give a better RL prediction.

It would be very interesting to see the effects of intermittency on the Eulerian

and Lagrangian two-point two-time correlations and to examine the sensitivity of

the energy transfer to the two-time Lagrangian covariances within the two-point
closure theory. Moreover, since the dynamics of the passive vector in the range

kd < /c < Km_z is dominated by non]ocal interactions, it might be possible to

loosen the requirement K,_G=/kd _ 2 by using an effective subgrid-scale model to
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drain passive vector energy at a wavenumber kp such that kd < kp < K,,_,ffi.

The authors wish to express their thanks to Dr. A. Wray for his help on the
Hypercube computations, to Dr. Y. Kaneda for his stimulating discussions and

to Dr. R. Kraichnan for his valuable advice. Time on the Intel Hypercube was
furnished by the NAS division at NASA Ames Research Center.
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N92"$0048
Turbulence and vortex structures

By Eliot Dresselhaus

1. Motivations

One of the most sought after goal in turbulence physics is to understand exactly

what features of the incompressible Navier-Stokes equations

O,_ + (_. V)_ = (_. V)¢ + _V2_ N = V x ,_

(here written in vorticity form) lead to the well-known Kolmogorov energy spectra

E(k) oc k -s/3 for intermediate wavenumbers 1/L _ k <:<: l/T} well separated from

both large scales L associated with boundary conditions and small scales _/asso-

ciated with viscous effects. If the two non-linear terms (g. V)_ (the large-scale

sweeping of vorticity by the mean flow) and (1_. V)_ (the small-scale stretching of

vorticity by velocity gradients) were dynamically unimportant, the Navler-Stokes

equation would show no inertial range; the energy spectrum would be as for fluid

particles undergoing random walks: E(h) o_ h 2 exp(-h 2) for all wavenumbers h.

Clearly, some dynamical feature of the two non-linear terms then must be respon-

sible for changing the relatively more cutoff "inertial range" spectrum k 2 exp(-h 2)

of the hypothetical random walker turbulence to the relatively less cutoff k -_D ob-

served in real fluid turbulence. For this to be the case, the non-linear terms must

generate energy on small scales relative to random walker dynamics and, moreover,

must do so in a scale invariant way. A precise dynamical understanding of these two

non-linear terms using both theoretical (mathematical) and experimental (in this

case primarily numerical) tools as necessary is -- even at the relatively low Reynolds

numbers of direct numerical simulations- at least a good starting point towards

a precise understanding of the critical behavior of the Navier-Stokes equation in

inertial range turbulence.

One of the outstanding features of direct numerical simulations of turbulence and,

presumably, of naturally occurring turbulence is the presence of coherent highly lo-

calized strands of strong vorticity. In light of the above argument, these "vortex

structures," derived (as will be outlined below) mostly but not completely from

the vortex stretching non-linear term (_ • V)g, must be in some way involved in

the energy transmission process from large to small scales. The presence of vortex

structures makes it tempting to view high Reynolds numbers velocity fields as some

sort of spatial and temporal superpositlon of structured and random regions (She,

Jackson, Orszag 1990). In this view, random regions contain most of the turbu-

lent kinetic energy of the fluid; structured regions, on the other hand, contain little

kinetic energy but do contain most of the flow's viscous energy dissipation. Thus,

vortex structures are skeletons of non-linear dynamical activity which separate re-

gions of relatively strong kinetic energy from regions of relatively strong viscous
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dissipation and dynamically moderate energy transfers from large to small scales.

Seen in this way, the traditional picture of a spatially fractal energy cascade, in
which eddies interact with smaller eddies which interact with smaller eddies and so

on until being dissipated at viscous scales, is likely wrong. Energy can certainly be
transmitted directly from large to small scales, presumably via vortex structures

and their dynamical interactions, without necessarily being moderated by a recur-
sive hierarchy of intermediate scales. If this is the case, then what is it about the
non-linear interactions which make turbulence self-similar?

As a starting point for these more general issues, the following questions need to be
answered. What are vortex structures? How axe they born? How do they die? What

Navier-Stokes dynamics generate them? These questions have been the subject
of previous work (Dresselhans and Tabor, 1991) and are the subject of present

investigations whose progress will be briefly described below. Questions beyond

these are even more fundamental towards a basic understanding of inertial range
turbulent self-similarity. How do vortex structures interact and what is spatially
and/or temporally self-similar about these interactions? If vortex structures are

primarily the precise dynamical result of the vortex stretching term (4. V)_, what

is the precise role of the sweeping term (g. V)_? Is there a dynamical connection

between stretching and sweeping terms? These further questions, not adequately
answered here, are the subject of future investigation.

2. Past and present

_.1 Vortez structures and the intermediate strain

A number of direct numerical simulations of incompressible turbulence (e.g.

Ashurst et al. 1987) have observed a strong tendency for regions of strong vorticity

to be aligned with the direction corresponding to the intermediate strain. That is,

vorticity, once stretched, is strongly perpendicular to the plane in which the most

local straining is occurring. Theoretical arguments (Betchov 1956) suggest that

-- at least for isotropic turbulence -- the intermediate strain which is primarily

responsible for stretching vorticity is on average positive. This result is initially a
bit surprising: one expects that since vorticity is stretched by strain

= s(t)fi + vv2fi,

vorticity should align and stretch along the principal direction of strain S with

largest positive eigenvalue. (Here and in what follows, S(£, t) = (0_/0_+c9gt/c9_)/2
is the strain tensor, n(_, t) = (0g/01- 0_t/0:/)/2, f denotes transpose, P is the

second derivative of the scalar pressure p(_', t), and d/dt is a material derivative so

that all equations are thought of in Lagrangian coordinates.) Although stretching

in the largest positive strain direction is observed for short times, it is not the pre-

dominant effect. We will see shortly that this preferred alignment between vorticity
and the intermediate strain is precisely what makes "coherent structures" coherent.
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To understand why vorticity stretches normal to the plane of largest strain, it

seems natural to transform the evolution equations for strain and vortlcity

d S = _S 2_ fl 2 _p +vV2S
dt

dfl
dt = Sfl + vV2fl (1)

into the moving orthonormal basis (with eigenvectors {_l(t),_,(t),_s(t)}) in which

the strain S(t) is diagonal (with eigenvalues sl(t) _> s2(t) _> s_(t)). Incompressibility
ensures that sl (t) is always positive and that as(i) is always negative; Navier-Stokes
dynamics ensure that s2(t) is on average positive at least for idealized turbulence

(Betchov 1956) and for numerically simulated turbulence (Ashurst et al. 1987).
The pressure second derivative can be written by inverting the Poisson equation for

pressure V2p : Y_a f_ - 81 to get

Pij(£,t) = 41r Ozi azj j I_- all " (2)

Pressure strongly couples in distant strain and vorticity into what would otherwise
be local dynamical equations for strain and vorticity. When strain and vorticity

have accumulated either locMly or globally, pressure effects will be important in the

dynamics of (1).
In order to write the evolution equations for strain and vorticity in the moving

strain basis, we must know how the strain axes rotate as strain and vorticity evolve.
The strain axes instantaneously rotate about a vector I_' given in strain coordinates

by the expression

1 E eijl, dS/dtij
a_ = _. h = _ ,J s,- sj (3).

The rotation of the strain axes depends on the Navier-Stokes evolution of strain

(equation (1)) via dS/dt, and hence the rotation of the strain axes are coupled to
the evolution of strain and vorticity. This coupling differentiates the stretching of

passive vectors such as magnetic field (in the ideal limit) from active vectors such

as vorticity. With the use of (1), the strain axis rotation vector splits into three

parts

1 (-"i"j -- Pi, + v(_7'S)ijn_,(t)= _ Z"ih ..... ,
ij si - sj /

respectively due to vorticity (f_), off-diagonal pressure second derivatives (_,),

and viscosity (f_'_). Alignment with the intermediate strain will shortly be seen as

a consequence of the special dynamical role played by the strain axis rotation due

to vorticity f_.
In strain coordinates, the Navier-Stokes evolution for strain and vorticity become

d 2 (fi2 a_) Pjj _v2sj_sj = -sj + - - + j=1,2 (4)
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and

i 1,2,3. (5)

The rotation of the strain axes due to vorticity itself has appeared as a non-linear

self-stretchlng term in (5) with stretching rate s_ defined by

,
si = 8j -- si

j_t

These self-stretching rates will be seen to be primarily responsible for vorticity

stretching in the intermediate strain. The rotation of the strain axes due to viscous

effects f_ cancels with other terms arising from projecting (1) into the strain basis

and is not present in (5). The rotation effects due to pressure second derivatives

play a complex non-local role in the evolution of strain and vorticity; a discussion

of the role of P in general will be deferred to the next section. These five coupled

ordinary integro-differential equations form the basis for the current analysis.

f compared to theThe sign and relative magnitude of the self-stretching rates s i

strains 81 axe of great dynamical significance. The quadratic dependence of 8_
on vorticity suggests that the self-stretching rate _ should dominate the strain

st as long as vorticity is sufficiently large (for example, in a vortex structure in

turbulence). Using incompressibility and the ordering sl _> s2 _> _3, one can see

that st(t ) <_ 0 and that st(t ) _> 0 for all times t. A similar argument shows that s t

can be either positive or negative depending on the relative alignment of vorticity

with the _] and _s directions. In either case, the non-linear stretching terms oppose

the production of vorticity -- at least in _] and _s directions. This opposition is

particularly striking in the _] direction.

t suggests the following La-The above discussion of the self-stretching rates s t

grangian description vortex stretching. Suppose that at some time t, the interme-

diate shear is approximately zero, i.e. s2(t) _ 0, and that the vorticity is weak,

i.e. _(t) _ 0. Since strain and vorticity are both by hypothesis small, the compo-
t

nents of Pij are also negligible. At this instant, the non-linear stretching rates s t

are small, and vorticity will begin to stretch in the _] direction. From equation (4),

it follows that since 82 _ 0, the stretched _] component of vorticity will cause s2 to

grow and become positive resulting in an increase in f_2. As a consequence of this

sequence of events, s_ will become large and negative and will quickly act to nullify

the previous growth in 12a (see equation (5)). Since 82 is still small compared to s],

the f_2 stretching will proceed for a longer time than the initial stretching of 12] due

to sl. This relative long-time persistent alignment with _2 survives until f_2 itself

becomes large at which point contraction of vorticity in the _s direction becomes

significant (due to the quadratic contribution of f_2 to the always positive non-linear

stretching rate 8_). The net result is that now s t becomes negative and large. This

suppresses the previous stretching of the intermediate vorticity f_2. The alignment

with the strong contracting direction causes a quick but not total destruction of

the previous vorticity build up. It should be emphasized that the relatively small
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magnitude of the intermediate shear s2 implies that the vortex stretching in the
intermediate direction is the most long-lived of the stretchings described in this
scenario.

Thus, vorticity initially grows in the largest positive strain direction. As self-
stretching effects take hold, it switches towards alignment with the intermediate

strain. Vorticity stretching proceeds in the intermediate direction as long as the

intermediate strain is positive and until further self-stretching effects cause it to

quickly and violently contract in the largest negative strain direction. This sequence
of events is robustly observed in a variety of simulations we have performed --

even in the presence of random forms of the pressure terms. The details of these

simulations are presented in Dresselhaus 1991.

_._ The role of pressure

The precise role played by pressure (via P) in the above description is sketchy

at best. In light of (2), pressure is negligible only when the "charge density"
2 2

p(_, t) = _-_ s_ - f_ (by analogy with electrostatics) is locally small. This charge
density p assigns positive charge to regions where strain is larger than vorticity

and negative charge where vorticity dominates strain. Also, pressure is only unim-

portant when other regions of strong vorticity are distant, randomly oriented, and

numerous enough to screen each other's charge density. We have implicitly as-
sumed this to be the case in the previous section and will continue to do so here.

That is, we will consider here only semi-local effects of pressure, effects due to the

self-interaction of the isolated strain and vorticity.

Based on the evolution of strain (4) and vorticity (5), the diagonal and off-

diagonal components of P play different roles. The diagonal components Pn(t) and

P2_(t), depending on their sign and magnitude, increase or decrease the largest and

intermediate strains sl(t) and s2(t). The off-diagonal components are involved in
rotating the strain axes in the vorticity evolution (5). Strong random off-diagonal

Pij(t) will unpredictably upset the alignment of vorticity with the intermediate
strain and will likely destroy the delicate emergence of a vortex structure.

The pressure integral (2) can be written explicitly

1/Po( ,t) = '

- - -
g) -

I1 -

In regions of the fluid where strain and vorticity form no coherent structures, one

expects that the tensor Pij will be isotropic and, although likely to be strongly
fluctuating, will average to zero. On the other hand, near coherent structures,

this isotropy likely breaks down. For a mature growing vortex structure aligned

along the intermediate strain, most of the semi-local charge p(_", t) in the integral

is oriented along this intermediate direction (which is here at least locally presumed

to be straight). Also, as long as vorticity has significantly stretched, it can be
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argued that the net semi-local charge density will be vortidty dominated and hence
negative. In this case, the kernels Gll and G22

will be dominated by terms involving _ = _- _ oc 42. Thus, as long as the vortex
is fairly straight and aligned along the intermediate direction, P11 will be positive

and P22 will be negative. If these pressure effects are purely local and the vortex

structure is perfectly straight, one would expect that -2P11 _ P22. The positivity
of Pll tends to decrease the largest strain sl ; the negativity of P22 tends to increase

the intermediate strain. Also, the increase in s2 should be more pronounced than the

decrease in sl. In this view, the semi-local effects of the pressure on vorticity growth
act in concert with the self-stretching effects described in the previous section. Both

mechanisms favor the growth of vorticity in the intermediate strain direction.

As long as vorticity remains aligned with and stretches along the intermediate

strain, similar arguments can be made for the semi-local effects of the off-diagonal
components of the pressure second derivative. Based on relative differences in the

kernel Gij, one can conclude that typical magnitudes of Pij for i # j will be ordered

IP 31< lP231< IP121,

The corresponding denominators si - sj in the expression for f_, are similarly
ordered

sl --s3 > s2 --s3 > Sl -- s2

(we are assuming here that the intermediate strain s2 is positive as it must be for

vorticity to grow in the intermediate direction). Thus, the strain axis rotation due

to semi-local pressure effects should have a slightly preferential direction. That

is, rotations taking vorticity between _1 and _2 wiii be strongest and more likeiy;

rotations taking vorticity between _2 and _ will be second most strong; rotations

between _1 and _3 will be least strong and less likely. Thus, when vorticity is
strongly aligned with _1 (as it is for short times), rotations will tend to carry it

into the _2 direction in concert with the self-stretching mechanism described above.

When vorticity is subsequent!y aligned with the intermediate direction, rotations
will tend to carry it into the _3 direction. It is likely that these semi-local rotation

effects are thus responsible for the ultimate destruction of vortex structures in the
strongly contracting _3 direction.

I_.3 Numerical verifications

In current and future work, these speculations concerning the role of pressure as
well as the entire strain basis description of vortex structures will be tested on a

variety of direct numerical simulation data bases. The goal of these studies will

be to verify and sharpen the intuitions gained by this approach. The dynamical

variables of interest will always be strain basis quantities, such as the principal

strains sl and s2, the strain basis vorticity components ftl, f_2, and f_3, the strain
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axis rotation vector due to pressure N_, and the pressure second derivative tensor

Pij. The interpretive tools used in these studies will be both statistical and visual.

Probability densities for these quantities will be studied conditioned on the strength
of vorticity. In this way, we can statistically separate vortex structures from the
background flow and contrast strain basis dynamics -- seen from this statistical

perspective -- in these structured regions from that of the background flow. Beyond

statistics, I would like to perform visualization studies of a single vortex structure

using these strain basis quantities to follow the birth, evolution, and death of a

vortex structure. These studies could verify speculations concerning the strain

basis evolution of strain and vorticity made in the two preceding sections.

3. Future work

Beyond the near future, one would like to address the more fundamental ques-
tions posed at the beginning of this brief. The research outlined thus far aims to

understand a single vortex structure in isolation. One would like to go beyond
this and understand the consequences of having many mutually interacting vortex

structures. In particular, one would like to study whether or not the strain axes

(particularly the intermediate strain axis) themselves have global alignment tenden-
cies with respect to fixed axes. In other words, do vortices themselves tend to have

mutual alignment properties? Such alignment must exist for anisotropic flows such

as turbulent shear flows and boundary layers but may or may not exist in isotropic
turbulence.

Along similar lines, it would be interesting to determine what the typical vortex

screening distance is in turbulence. This corresponds to the fluid dynamic analogy

of Debye screening in plasmas where in complex distributions of positive and neg-
ative charge (ions and electrons in the case of a plasma) the Coulomb interaction

becomes screened. Individual charges are only dynamically felt over a typical dis-

tance -- the Debye length. Beyond this distance, the plasma can be thought of as
electrically neutral. In a turbulent fluid filled with many dynamically appearing and

disappearing vortex structures, one would like to investigate the analogous typical
interaction length.

Further future work seeks to understand whether or not Navier-Stokes dynamics

is more than just vortex stretching and dissipation. In other words, is any relevant

Navier-Stokes physics lost by considering the vorticity equation as a Lagrangian
(rather than Eulerian) evolution equation. If no physics were lost then, just as the

Kolmogorov theory characterizes dissipation by a single number e, it seems plausible

that vortex stretching could also be characterized by a single number: the average

of the intermediate strain (82). Such an approach may provide a more physical,
more dynamical characterization of intermittency effects in turbulence than the

traditional intermittency corrections to the Kolmogorov theory. If physics is lost in

the transformation from Eulerian to Lagrangian coordinates, as I believe it must be,
then the precise dynamical role of the sweeping term in vortex interactions needs
to be further understood.
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Vorticity matching in superfluid helium

By David C. Samuels

1. Motivation and objectives

Experiments by Van Sciver (1990) and others (Weisend et al. (1990), Walstrom

et al. (1988)) have rekindled interest in investigating high Reynolds number flows

using superfluid helium (Craig and Pellam (1957)). In a continuing series of ex-

periments, the flow of helium II through various devices (smooth pipes, corrugated

pipes, valves, venturies, turbine flowmeters, and coanda flowmeters for example) has

been investigated. In all cases, the measured values (typically, mass flow rates and

pressure drops) have been found to be well described by classical relations for high

Reynolds number flows. This is unexpected since helium II consists of two inter-

penetrating fluids; one fluid with nonzero viscosity (the normal fluid) and one with

zero viscosity (the superfluid). Only the normal fluid component should directly

obey classical relations.

Since the experiments listed above only measure the external behavior of the flow

(i.e. pressure drops over devices), there is a great deal of room for interpretation

of their results. One possible interpretation is that in turbulent flows the normal

fluid and superfluid velocity fields are somehow "locked" together, presumably by
the mutual friction force between the superfluid vortex filaments and the normal

fluid. We refer to this locking together of the two fluids as "vorticity matching".

Stronger evidence for this theory is found in experiments by Borner and Schmidt

(1985) which measured the circulation distribution of both the normal fluid and

superfluid in macroscopic vortex rings. They found that the vortex ring circulations

in both fluids are equal even at the closest measurable distance from the orifice of the

vortex ring generator. The Reynolds numbers for the flow inside the ring generator

were 20,000 to 40,000.

The primary objective of the present study is to determine the physics responsible

for vorticity matching in helium II flows. Similarly, since we know that not all types

of helium II flow show vorticity matching, examining the limits of this matching is

also an objective of this study.

We are pursuing this project with numerical simulations of superfluid vortex

filaments. Each filament is modeled as a series of N nodes connecting straight

vortex segments. The meshing of the filaments is automatically adjusted during

the simulation in order to keep an approximately constant ratio of segment length

to local radius of curvature, within maximum and minimum curvatures, as the

filament grows or decays through the mutual friction force. Provisions are included

which reconnect the filament mesh whenever a crossing is detected. The self-induced

velocity _ of the filament is calculated by the Biot-Savart law, integrated over all

filaments in the fluid. Boundary conditions are met by the method of images. Since

the Biot-Savart law is a non-local integral, a straightforward implementation, such
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as the one we are using, is an order N 2 process. This limits us to a maximum N of a

few thousand, running on a Cray Y-MP. A local approximation to the Biot-Savart

law would allow us to use a much larger number of mesh points but would ignore the

noalocal interactions that are most important when the length of vortex filament

is large. Accordingly, we use the full Biot-Savart law in the simulations reported
here.

The total velocity of a node on the vortex filament (Hall and Vinen (1956)) is
give by

dj = + ¢. + × (¢,,_ ¢. _ (1)
dt

where S is the position of the node, _7o is the superfluid velocity from sources

other than the superfiuid vortex filaments, _7,_is the normal fluid velocity field, ck

is a temperature dependent mutual friction coefficient, and S' is the local tangent
vector of the filament. The value of c_ is well known at all temperatures from

experiment (Barenghi, Donnelly and Vinen (1983)) and is understood theoretically

for temperatures below approximately 1.8 Kelvin (Samuels and Donnelly (1990)).
This equation of motion is solved by a Runge-Kutta-Fehlberg method.

2. Accomplishments

The most general accomplishment of this study has been the determination of

two necessary conditions for vorticity matching. These conditions are:

a) A one dimensional (or higher) region where l)n = 17omust initially exist in the
fluid.

b) A source of superfluid vorticity must be present.

The region with _7 = l_° must be at least one dimensional so that a superfluid

vortex filament can fit within this region. The normal fluid at the boundary of the

matched velocity region will have some vortidty _,,. Superfluid vortex filaments

with a component of vorticity in the same direction as 07,, are transported by mutual

friction from the superfluid vorticity source to the boundary of the region of matched

velocities. As the filaments accumulate here, the superposition of their velocity fields

extends the matched velocity region to a larger (three dimensional) volume.
A useful example of a flow which satisfies condition (a) is the normal fluid vortex.

Assuming for simplicity that _7 is a vortex flow with some core structure and

V0 = 0, on the axis of the normal fluid vortex I7,_- _7° goes to zero, and condition
(a) is met. Superfluid vortex filaments with the same orientation of circulation

as the normal fluid vortex will be attracted to the normal fluid vortex core by

mutual friction, and filaments of the opposite circulation will be repulsed. If some

source of superfluid vorticity (condition (b)) exists, then we would expect normal
fluid vortices to show vorticity matching. This type of flow is important to our

understanding of the vorticity matching of high Reynolds number flows in superfluid

helium since it provides a simple model for the interaction of superfluid vortex
filaments with concentrated vortex structures in the turbulent normal fluid flow.
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In this case, the superfiuid vorticity source is provided by the instability of vortex

filaments in a background shear. Aref and Flinchem (1984) observed this instabil-

ity in simulations of vortex solitons with an applied velocity shear but did not

correctly identify the cause. Later, Pierrehumbert (1986) identified this behavior as
an instability of infinitesimal sinusoidal vortex waves in a background shear. With

straightforward modifications to include mutual friction, this instability is appli-

cable to superfluid vortex filaments with external superfluid and normal fluid flow
fields. We consider the case where the normal fluid flow is a vortex flow

_Vn/¢

v.e = 2,_---V (2)

where N,, is the ratio of the normal fluid circulation to the superfiuid circulation

quantum to. We also impose an external superfluid vortex flow field

Nj ?f

Voo= 2,%7 (3)

where iV, is the number of circulation quantums of the field. This external superfluid
flow is included to represent the velocity field of any superfluid vortex filaments

trapped at the center of the normal fluid vortex. With these external fields, the

frequency of sinusoidal waves on a superfluid vortex parallel to the normal fluid
vortex is

[2s(N,_- N,) ] ( a 2 s2No_T = i,_ I (;-_)_G - 1 + 2,_ (1 - T) + (rk)2----d
1

a2CN,,-No) 2 a2(N,,--No)_ i
- (rk)4m + (_k)_a / (4)

where T is the wave period at absolute zero temperature, k is the wavenumber,

s = -t-1 is the sign of the filament circulation, and G = ln(1/kao) where the filament
core size ao is approximately one .&ngstrom. Since the situation considered here

is slightly different than that treated by Pierrehumbert (1986), we provide the

derivation of equation (4) in the appendix.

For a pure normal fluid vortex (No = 0), with positive circulation, waves on

superfluid vortex filaments with negative circulation are damped at all distances,

while waves on positive vortex filaments are unstable within a critical distance rc
given by

1

T = \27r2GJ (5)

where _ = 2_r/k. The instability of these waves triggers a process of exponential

growth of the superfluid vortex filament.

This exponential growth process is illustrated by the simulation results shown in

figures 1 and 2. This simulation was run with a normal fluid vortex of strength
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FIGURE 1. Vortex filament length vs. time. (A) denotes the total length of
superfluid vortex filament. (+) denotes the length of superfluid vortex filament
present inside the normal fluid vortex core.

N,_ = 1000 along the Z axis. The core size of the normal fluid vortex was set at

Rco,., = .01H, where H is the height of the computational box, and the interior of

the normal fluid vortex core was modeled as solid body rotation. The temperature

was T = 1.6K, where a = .16. The initial conditions were two superfluid vortex
filaments, one with positive circulation relative to the normal fluid vortex and the

other with negative circulation (figure 2a). Each vortex filament carried a sinusoidal

wave with wavelength ._ = HI4. In order to decrease the computational time, the

initial amplitude of the waves was sizeable, A = .09k,. Each filament was placed on

opposite sides of the normal fluid vortex at a distance r = .47H from the origin,
within the critical radius rc = .54H. The positive circulation filament is attracted to

the normal fluid vortex, and its wave grows in amplitude. The negative circulation
filament is slowly repulsed from the normal fluid vortex, and its wave decreases in

amplitude. Simulations conducted with the negative vortex filament initially closer

to the origin show the same decrease in wave amplitude, confirming that the wave

instability is due to the circulation sign and not the closer approach of the positive
filament to the normal fluid vortex.

The increase in length of superfluid vortex filament is characterized by three

stages, easily seen in figure 1. The first stage is simply the exponential growth of

the wave amplitude. This stage ends when the amplitude becomes equal to half the

wavelength (figure 2b). In the second stage, the behavior is best described as the
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FIGURE 2A. Evolution of the superfluld vortex filaments, t = .02mS. The positive
filament is on the left.
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FIGURE 2E. t = .40mS.

growth of a series of rings (figure 2c). The growth rate is increased greatly in this

stage. During this stage, the rings grow large enough to reconnect, forming new

vortex filaments which span the length of the computational volume (figure 2d).

The vortex lines continue to "bud" vortex rings, ultimately forming a dense region

of interacting superfluid vortex filaments (figure 2e). The third stage is defined

by another large increase in the growth rate and by a significant accumulation of

vortex filaments inside the normal fluid vortex core (figure 2e and figure 1). The

process responsible for this accelerated growth is unknown. It is important for

us to understand the time scales for the growth of the superfluid vortex filament

since these time scales must be short in comparison to the lifetimes of concentrated

vortices in the normal fluid turbulence if there is to be any vorticity matching in a
turbulent flow.

It should be emphasized that this vorticity cluster (figure 2e) is quite different

from the vortex tang]es that develop in simulations of counterflow (Schwarz (1988))

since this vorticity is highly ordered on the large scale, consisting mainly of distorted

rings oriented paral]el to the normal fluid flow. The degree of order of the vorticity

can be quantified in the following manner. The direction of a section of curved

vortex filament can be defined by the Ubinormal" unit vector

b_= x (a)

where S is the position vector of the filament and a prime denotes a derivative by

arclength. The binormal vector points in the direction of the velocity due to the local

curvature of the vortex filament (Arms and Hama (1965), and thus provides a good
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FIGURE 3A. Correlation of binormal vector with normal fluid velocity averaged
over all vortex filaments outside the normal fluid core.
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separately over positive circulation filaments (solid line) and negative (dotted line).
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indicator of how the curvature of the vortex filament is reacting to an externally
applied velocity field. Take a line integral

x= f .  ,dg
f dg (7)

where t3 is some reference unit vector. This integral measures the correlation of the

binormal and the reference vector. For the geometry of this simulation, we take the
reference vector to be the azimuthal unit vector, which is the direction vector of the

normal fluid flow. Since the vortex filaments inside the normal fluid vortex core axe

extremely straight, their binormals axe undefined (they have no "direction"). With
this in mind, the line integral is restricted to filaments outside the core radius. In

figure 3a, we show the results of this calculation. The vortex filaments, initially

uncorrelated with the normal fluid flow, become very highly correlated, reaching

a maximum correlation of .8 averaged over all the filaments. When positive and

negative circulation vortex segments (defined by the sign of the Z component of the

tangent vector of each segment) axe considered separately, both signs of vorticity

show some correlation, with the positive circulation correlation significantly higher
than that for the negative circulation (figure 3b).

The end of the first stage gives us a limitation on the minimum strength N_ of
the normal fluid vortex which can follow the procedure described above. In order

for the wave amplitude to reach _/2, the distance of the superfluid vortex filament

from the core of the normal fluid vortex must be greater than _/2. Inside the core

of the normal fluid vortex, the superfluid vortex wave is damped, and the superfluid
vortex filament quickly straightens. If we write the critical radius re as

we can derive a minimum N,_ from equation (5).

Nn > 21r2G (1+ _-_) (9)

Since G is a very slowly changing logarithmic function, we can approximate it by
G = 15 4- 5 over many orders of magnitude in _. By also assuming that _ >> Rco_,
we can write equation (9) as

Nn > 75 + 25 (10)

This number should be considered only a lower limit on the actual smallest unstable
N..

3. Future plans

(1) Determine the role of the normal fluid vortex core in the matching process.
This may be an important part of the rapid growth phase.
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(2) Attempt to follow the vorticity matching process to completion. We cannot do
this directly, but with a greater understanding of the behavior of superfluid vortex
filaments inside the normal fluid vortex core, we may be able to form a simple model

of their effect on the superfluid vorticity outside the core.

(3) Closely examine the ring budding behavior seen in figure 2d. We must estab-

lish that this process is not a numerical artifact.

(4) Determine the time scales of the superfluid filament growth and compare them
to the time scales of the normal fluid turbulence.

(5) Consider the reaction of the normal fluid to the superfluid vortices. In all
simulations of superfluid vortices, the normal fluid velocity field is considered to be

an input to the program. We cannot calculate in detail the response of the normal

fluid, but we may be able to include the energy transfer between the fluids in some

average manner.
(6) Examine the motion of matched superfluid - normal fluid vortices. Will motion

of the matched vortices cause some decoupling of the vorticities?

(7) Simulate the vorticity matching process in the presence of external I7,, and

Vm. Will external flows interfere with the vorticity matching?

Appendix

Consider a straight vortex filament perturbed by a sinusoidal disturbance.

[°1Eil= 90 + eq/'z-_¢)

z0

(A1)

To conform with the notation of Pierrehumbert (1986), we write the equation of

motion (equation (1)) as

dJ ¢, + (A2)
dt

where we have defined

0- o × - - (A3)

In the low amplitude limit, the self induced velocity of a sinusoidal vortex wave is

where s = +1 defines the sign of the vortex circulation and T is the period of the

undisturbed wave. Applying equation (A2) to equation (A1) yields

[ dzo / dt ] 21r (AS)
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We are only considering the case where the Z component of _ is zero. In this case,

the Z component of equation (A2) is trivially dze/dt = 0 and is dropped for the

rest of this analysis. Now we llnearize U. We choose to define the X and Y axes so

that the gradient of _ is along the Y axis.

d0[ e_(t,_.O (A6)

For compactness, define

dO

Using the ]inearized U in equation (AS) yields

(A7)

d.oldtI = go (AS)
dyo�drJ

and

From equation (A9), we solve for w.

(A9)

1

/ 2x 2x 1 2\ _
U_ ---- l i u ly "4" _ _ -_ ( S --_ -}- U t-) - i _ _?[ ' I]

(AIO)

For the case where the velocity fields ]7,_and TT,are vortex flows (equations (2) and

(3)), we have

N._¢ (All)U'_ - 2_rr2

and

(A12)

Using equation (All), equation (A12) and T = 8_r2/_ck2G in equation (A10) yields

equation (4).
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The role of pressure-dilatation

correlation in rapidly compressed
turbulence and in boundary layers

By O. Zeman

1. Motivations and objectives

This work is a result of the continuing effort to advance our understanding of

the compressibility effects on turbulence and to develop new, and improve the old,

models for compressible turbulent flows. A specific goal reported here has been

the investigation of the role of pressure-dilatation correlation in rapidly compressed
turbulence and in boundary layers in general. The rapid compression process is

present in flows of practical importance such as in internal combustion engines and

in boundary layer/shock interactions.

2. Accomplishments

The basis for the investigation of the rapid compression effect on turbulence has

been the results of the direct numerical simulations (DNS) of compression of homo-

geneouJ turbulence (Coleman and Mansour 1991). The study led to a development
of new turbulence closure models which represent the physics of rapid compression.

The study of the DNS of compressed turbulence yielded the following important

findings: it was established that when nearly incompressible turbulence (with small
r.m.s. Mach number Mt <:<: 1) is rapidly compressed in one direction (1D), unex-

pectedly high levels of neg_aative pressure-dilatation correlation are generated. The
pressure-dilatation term (p0) appears in the turbulence kinetic energy, and its mag-

nitude during the 1D compression can become an order of magnitude larger then

the total dissipation (et); hence,/_9 can lead to a significant loss of turbulent kinetic

energy to pressure fluctuations. The striking aspect of this rapid compression mech-
anism is that it is most effective when M¢ <:<: 1 and that it is inefficient when the

compression is more isotropic, i.e., acting in all three directions. All these aspects
have been included in the new model for pressure dilatation described in Section

2.1. Section 2.2 describes an application of the new rapid pressure-dilatation model

in modeling the turbulence response to passing through a shock. In Section 2.3,

an inhomogeneous contribution to pressure-dilatation in adiabatic boundary layers

is suggested. This contribution is shown to be instrumental in mitigating the dis-
crepancy between turbulence closure models and the Van Driest Law of the Wall.

Finally, in Section 2.4 model predictions are Compared with experimental data in

supersonic boundary layers over an insulated plate.

_,.1. Rapid cornprejgion of hornogeneouJ turbulence

The basic energy-governing equations describing compression of homogenous tur-
bulence are
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10q 2_ = - q'V'U-et+ _ -q'boS _ (1)
P

Oc,,_"
= -(_ - 1)c,_V.U + _, _-7 (2)

10p 2 = _7_-_V.U _ 3'_t_ (3)20t

= -_V.U (4)

(5)

where q2 _ u_j denotestwice Favre-averagedturbulencekineticenergy,etisthe

totaldissipationrate,bijisthe departure-from-lsotropytensor,and _ isthe fluc-

tuatingpressurevariance.The pressure-dilatationcorrelation_ appears in Eqs

(1)-(3);0 standsforfluctuatingdilatation,i.e.0 = u#j. The mean divergenceV-U

followsthe time dependence dictatedby the homogeneity constraint

v.u(t) = ao
1 - Aot

where -Ao is the initial divergence. The last term on the right side of (1) represents

the nonisotropic contribution to turbulence energy production; here, S_ is the trace-
free mean deformation tensor defined as

I 2V.U6o)"s'_: _(v,,j+ us,,- (6)

Note that for spherical (isotropic) compression, S*j is identically zero. The condition
of rapid distortion requires that

q2

ao-- >> 1. (7)

In this case, the dissipation e_ can be neglected, and the major closure problem in
the equation set (1)-(5) consists in approximating _. In the previous work, Zeman

(1991a,b) has suggested the following model for the pressure correlation term (also
Zeman and BlaisdeU 1991)

= (_)-'{(_-_';) + cd,,pWv-u} (s)

where p_ c_ _2M,4 is the equilibrium value of the pressure variance p-_ and r t is the
(acoustic) relaxation time scale defined as _'! : 0.21"M_. Here, Mt = q/a is the r.m.s.

Mach number and r = qU/e° is the turbulence time scale (based on the solenoidal
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part es of the total dissipation et). In (8), the first term represents a nonlinear
relaxation to equilibrium, and the second term can be considered as a rapid contri-

bution. From the modified theory of Sabelnikov (1975), it was possible to determine

the rapid compression constant cdiv in (8) as edi_ ----(5 -- 37)/12 (see Zeman 1991c,

Durbin and Zeman 1991). The pressure-dilatation model in (8) has been shown
to represent the principal physics associated with the initial transient and subse-

quent evolution of unforced and shear-driven turbulence (where V.U = 0). When

compared with the direct numerical Simulations (hereafter DNS) of rapidly com-....
pressed turbulence (Coleman and Mansour 1991), the model reproduced fairly well

the spherical compression case (Zeman1991c). However, the model was incapable

of reproducing the DNS results of the one-dimensional (1D) rapid compression. The

peculiarities of the turbulence behavior under the spherical vs 1D compression led
to interesting findings concerning the importance of the pressure dilatation in the

rapid compression of nearly incompr___essible turbulence and, ultimately, to the for-
mulation of a new rapid model for p0. The latter work has been described in detail

in Zeman (1991c). Later, Durbin and Zeman (1991) developed the rapid distortion
theory and suggested a new model for the pressure dilatation, intended for the rapid

compression of low Mt turbulence.

To explain the effect of the directionality of compression on turbulence, it is
illuminating to realize that the rapid contribution to instantaneous pressure p(x, t)

for Mt < < 1 involves an integral

p(x,t) u+,sf .s,+(x',t)c(x,x')dx' (9)

where G is the appropriate Green's function. For the spherical rapid compression,

the contributions to p(x,t) consist of V.UO(x',t) (recall 0 = us,s). In the incom-
pressible limit Mt -, 0, the rapid pressure is negligible since 0 _ 0. However, in 1D

compression (say, V.U = U1,1), the contributions to the right side of (9) involve

terms V-Uul,1 which are finite even when turbulence is solenoidal. Now, rewriting

(3) in a different form:

1 0(p2/7_) = _p--_ (10)
2 0t

we can ap__preciate that solenoidal pressure contributions to p_22can lead to a finite
value of p0; the only requirement is that the rate of change of p2 is sufficiently rapid.

An insight into the formulation of a modeling expression for pO that would distin-

guish the directionality of compression can be obtained from a snitably arranged

equation for pO:

DpO 3
Dt = -(2 +7)W'U_-TP_-- 2S*S_ + tt.O.T. (11)

Here, the higher order terms H.O.T. can be discarded if the rapid condition (7)

is satisfied. The last rapid term in (11) involves the pressure-strain correlation

as it also appears in incompressible Reynolds stress equations. The leading order



108 O. Zeman

contribution to this term is known to be _ s 1 .= _q {_S';j + F_j(S,b)} where F,j is
a tensor bilinear in S_j and b_j (see, e.g. Zeman 1990). The final form of the rapid

directional part of p0 is

(t_)D = cdlp_ qS I"{(S_)S Jr cdsblkS_jS_ }, (12)

where call = 0.0004 and cda _ 2. The form of the model in (12) without the higher

order terms in b_j was first suggested by Zeman (1991c); inclusion of the anisotropic

contribution has improved the model performance at larger total strains (when
Aor > 0.5).
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FIGURE 1. Evolution of the pressure-dilatation/dissipation ratio in rapidly com-
pressed turbulence; the initial M_ = 0.024.

To contrast the effect of the compression directionality, we present in Fig. 1 the
model-DNS comparison of the quantity p0/(_e¢) for spherical (3D) and 1D com-

pressions with the same initial values of M¢ = 0.024 and of the rapid parameter

Ao_" = 47. The closure for p0 is as that in (8) plus the directional contribution

in (12). It is evident that the model replicates the fundamental physics of the

directional compression effect: in 3D compression/>0 is negligibly small even in

comparison with the dissipation; in 1D compression, on the other hand, the pres-

sure dilatation term can be by an order of magnitude larger than dissipation and,
therefore, important for the turbulence energetics. As discussed in detail in Zeman

(1991c), the principal effect of the pressure-dilatation term is to mediate energy

exchange between the kinetic to the pressure fluctuation (potential) modes. Dur-

ing the 1D rapid compression, p0 is negative, and hence, according to (1) and (3),
the kinetic energy q2 is converted into the potential energy. This leads to a lower

growth rate__.ofqS than that predicted, for example, by incompressible k - e models,

where the p0-term is absent. In conclusion, during a directional rapid compression,

the kinetic-to-potential energy conversion can be significant even when turbulence
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FIGURE 2. Decaying turbulence response to a shock: Model-DNS comparison.

is virtually incompressible and the reduced growth of q2 (if detected) should not

be attributed to viscous dissipation. As discussed next, the described mechanism

is clearly relevant to flows of practical interest where turbulence passes through a
shock.

_._. Pressure dilatation in turbulence passing through a shock

The model for the pressure dilatation has been tested against the DNS data of

isotropic (decaying) turbulence passing through a normal shock (Lee 1991). With

the zl axis aligned with the direction normal to the shock, the relevant kinetic

energy equation in the Favre-average setting can be written as

1 2 _ 1 1

Ul_(q ),I---u_UI,I - P
- (e. - =(T.. +

_.p
(13)

i

where Tijl = puiujul are nonzero third moment fluxes in the zl direction, and
the fluctuation velocity average is by definition _1 = -_ul/_, which is nonzero.

To simplify the model computation, the mean shock flow quantities U_(zl), _(z_ ),

and pressure _(zl) are prescribed from the Rankine-Hugeniot relations. In order to
close (13), apart from the closure for Hd, it is also necessary to model et and the

inhomogeneous terms: the pressure flux pul, mass flux p'ul", and Tjjl. The modeling

approach is described in detail in Zeman (1991c). Here, it should be noted that the

so-called acceleration term associated with the mean pressure gradient P,1 is very

sensitive to modeling the mass flux p'ul oc -_1. Application of the Strong Reynolds

Analogy (SRA) of Morkovin to estimate the mass flux leads to a wrong sign of the

acceleration term (p'ul > 0), ultimately overestimating the energy amplification
through the shock.

Although the turbulence/shock interaction flow in question is inhomogeneous, the

homogeneous (rapid) part of the pressure-dilatation term must play an important

role in the dynamics since the compression is one dimensional and very rapid. The

DNS and model results are compared in terms of the kinetic energy q2 in Fig. 2.
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Here, the decaying turbulence passes through a shock located at the normalized

distance zlkl = 12.5, where hi is the wavenumber associated with the peak of the

initial energy spectrum at zl = 0. In the model, kl is related to the initial dissi-

pation length scale, namely (hl),_od cc (eo/qS)o. The upstream mean Mach number

is M1 =- 1.18, so that the shock density ratio is C -- P2/Pl = 1.31; immediately

in the front of the shock, the r.m.s. Mach number is Mt = 0.13. The sharp peak

in the DNS results (solid circles) at the shock location is caused by the unsteady

movement of the shock, and it is not relevant to the overall (effective) turbulence

response to the shock. The solid line represents the model prediction with the

complete pressure-dilatation model in (8) and (12); the dotted line represents the

model results with the directional rapid part (_)D in (12) excluded (note that

(Si*j) 2 -- _(U1,1)2). It is evident that the model-predicted shock amplification ratio

A 2 2= q2/q_ is strongly dependent on the rapid part (_)D. There appear to be no

other means to bring the model prediction into agreement with the DNS results.

Here, we should point out that the (effective) DNS computed amplification A = 1.15

is significantly below the linear rapid estimate

C 2 2

A = y(1 + 1.37.

Similar discrepancy has been observed by Jacquin, Blin, and Geffroy (1991) in the

wind tunnel experiment: with C=1.5, they measured very little amplification of q2

through shock, although the linear estimate is about A = 1.4.

_.3. Pre_Jure.dilatation in adiabatic _uperJonic boundary layer

This section concerns a modification in Reynolds stress closure models (RSC)

and k-e models intended to recover the Van Driest compressible law of the wall in

supersonic turbulent boundary over an adiabatic wall.

As shown by Huang, Bradshaw, and Coakley (1991), the current standard k - •

models are not capable of recovering the Van Driest compressible law of the wall

(hereafter Van Driest Law). According to this law, the Van Driest transformed

mean velocity Uc should follow the incompressible logarithmic law of the wall (in

the limit of zero free stream Mach number M -_ 0). The wn Driest transformation
is defined as

Uc = l/2dU (14)

and the log law is then

Uc U+ lln(y+) + 5.2, (15)

where

:

is the friction velocity and y+ = yu./v_,, and s : 0.41 is the yon Karman constant.

The subscript w denotes properties at the wa_, i.e. _'_, is the wall shear stress;

otherwise, the notation is standard.
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In the following it is shown that in the current models, the kinetic energy equation

is not complete; the missing physics and corresponding term have to do with the

pressure-dilatation correlation generated by the (vertical) density gradient.

?,.$.1 Pre_aure.dilatation correlation in a boundary layer

Following the same reasoning as in Zeman (1991a), the inclusion of the density

gradient term in the expression for p0 is fairly straightforward. The equation for

fluctuating density reads

Df
- _ujj - (p'uj)j - uf_j - ptV'U. (17)Dt

and with the adiabatic relation p/p = 7p_/-_, one obtains the equation for p2

_ = -POTP - aa-pjpujm - 7p-i-V.U + H.O.T. (18)

The pressure flux puj can be expressed as

N

= + T j) .,p,u----jSa(M,), (19)
P T

where fa is a function which must satisfy certain limiting behavior to be discussed
later. Since in the thin layer approximation the advection term is small compared

with the right side of (18) and the mean dilatation V.U _ 0, (18) reduces to the

principal balance between the pressure dilatation and density gradient terms,

w

(20)

In analogy with the closure equation for heat flux _'ruj, one can form an equation

for the mass flux bp%j (see Zeman 1991c for details). In the flat plate boundary

layer, the latter equation reduces to a gradient model p_uj = -Tug'p, 2 where T is
a mass-flux relaxation time scale made proportional to the turbulence time scale,

T ocr. An expected dependence of T on M, is absorbed in the function fa" Hence,

the final closure expression for the density contribution to p0 of (20) is

= ¢--, (21)

where Ca is a free constant. Concerning the desired behavior of the function .fa,

we argue as follows: if the turbulent fluctuations were quasi-adiabatic, then fa _ 1.
Such an approximation would be permissible if the boundary layer flow is adiabatic

(with no surface heat flux). On the other hand, if the boundary layer is nearly

incompressible (and with arbitrary surface heat flux), we would expect 1 -TI -_

-pqZu,; hence, fa(Mt) should approach zero as Mt2.
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The new density-gradient contribution to pressure dilatation formulated in (21)

is positive and reflects the process of conversion of the potential (_x pa) to kinetic
energy. The pressure fluctuations are produced by the action of turbulence on the

density gradient; in turn, this density gradient is produced by turbulent dissipative

heating. In principle, this new term should be combined with other contributions as

described earlier in this report. However, in zero-pressure-gradient (ZPG) boundary

layer, the latter contributions were found to be negligible. Considering now the

incompressible limit of boundary layer flow, it is imperative that the new term

approaches zero as Mr --_ 0 in such a manner that the ratio :rpd = p0/(_) _ 0. In

the adiabatic boundary layer, this condition is satisfied since 7rpd _ .fpM4/Mt and
Mr oc M. In boundary layers where the density gradient is due to a difference AT

between free stream and wall temperatures, (21) yields

AT 2 2

(T) A,M# •

The quantity in the parentheses in the above expression is typically of order 10 -1

or less, thus the relative contribution of p0 in the q2 equation is indeed small as

long as fp approaches zero as M_-_' with n _> 2. As previously discussed, n = 2 is

consistent with the required behavior of _T" In the computational examples that

follow, we have chosen n = 3 so that lrpd approaches zero as Mr. This requirement
guarantees no (spurious) contributions from pO when Mr _ 0. At this point, it is

appropriate to mention that Rubesin (1990) arrived, from quite different premises,

at a pressure dilatation model expression which is similar to (21). However, the
Rubesin model would be unphysical in a non-adiabatic boundary layer in the small

Mt limit since it yields 7b,., -_ M_-2. Such behavior is inadmissible and would lead

to spurious turbulence energy production in regions where density gradient is finite

but Mt << 1. This could occur in any type of boundary layer flow (for example, in

the separation bubble of a supersonic compression corner flow).

The preliminary computations of a ZPG boundary layer over an insulated wall,

with a modified RSC model (Zeman 1990; 1991b) which includes the pressure di-

latation term in (21) are shown in Figs 3 and 4. For the best results, the free

constant in (21) was set at Up = 0.002; referring to the previous discussion, the

function fp was chosen as

.fp(Mt) = 1 - ezp{-(15Mt)s}. (22)

so that fp ,_ 1 for Mr > 0.1, and fp _ Mt s as Mr _ 0 as required. It should be
pointed out that the model results are insensitive to the exact form of fp although

(22) is the most convenient form to satisfy the required function limits. Fig. 3 de-

picts the Van Driest velocity profiles U_+ (!1+) for different freestream Mach numbers

(M) with p0 from (21) and (22). It is seen that the profiles collapse reasonably weU;

for the measure of improvement, one profile is shown (with M = 7) with the pressure
dilatation set at zero. Fig. 4 depicts the scaled profiles of dissipation _y(_/_. )3/2

(labelled _+) as functions of V+ for different Mach numbers. According to the Van
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FIGURE 3. Boundary layer velocity profiles in Van Driest coordinates for different
Mach numbers: model simulations.

FIGURE 4.

R8=22000

..._/-g.........
.......... .... w=7

,.2 .__ -___--_,po_-
........................................ ...° \

0 , i _ , , . , ___ i _ i tM "_,_, "..i , %. t , , _ t I

4*ld I0 2 I0 3 10"

y+

Normalized dissipation e+ = etcy(r_-)S/2; otherwise same as Fig. 3.

Driest scaling, the depicted profiles should collapse to unity in the log region (con-

stant stress layer) which is evidently the case. As in Fig 3. the included dissipation

profile with the pressure dilatation absent indicates the model improvement. It is

to be added that _q2 is not constant in the constant stress region; however, this is

not contradictory to the Van Driest Law.

In conclusion, there exists corroborative evidence for the proposed pressure-

dilatation model in (21) from the so-called two-scale DIA theory of Yoshizawa.
To demonstrate this, we note first that the quantity -p'%p,j'- in (20) represents

the rate of production of density fl___uctuations which, in turn, is proportional to

the density fluctuation decay, say, p'2/'rp. Here, _'p is a decay time scale controlled

primarily by the (molecular) decay time scale of temperature fluctuations. Hence,

the pressure-dilatation term in (21) is related to the density fluctuation variance
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2 in the following waypl 2 = o'p

P = Cpfp_ _2" (23)

Now, Yoshizawa (1990) inferred from his two-scale DIA theory the following expres-

sion for the subgrid-scale eddy viscosity (denoted v:r) in compressible turbulence:

if2

VT = VTo(1 + COnSt _'_ ).
P

Thus, the basic (Smagorinsky) viscosity I/To is augmented by a term containing
2 Evidently, the presence of density fluctuationsthe density fluctuation variance _p.

increases the subgrid-scale viscosity via the increase in kinetic energy. It can be
easily shown that the p0-contribution (23) in the kinetic energy equation would
lead to a similar form of the subgfid-scale viscosity as in the Yoshizawa expression
above.

_._. Comparison with boundary layer ezperiments

As an indication of the overall performance of the boundary layer model, we

have chosen to compare the model predictions of mean velocity and temperature

with the experimental data of Coles tabulated in Fernholz and Finley (1977) as

Case 53011302. The comparisons are shown in Figures 5 and 6. Here, the ZPG
boundary layer is adiabatic with the freestream Math number M = 4.544, and

the momentum thickness Reynolds number Ro = 5,500. To demonstrate the effect

of the new p0-contribution in (21) on the model predictions, the dashed curves in

Figure_.s 5 and 6 represent model computations without p--O.The contribution of the
new pO term to the improvement of the model predictions appears to be small. The

degree of improvement Would be more clearly evident if the profiles are presented in

the van Driest coordinates. In terms of the velocity gradient and friction coefficient

values, the new p# term represent about 15% improvement.

According to (23), the new pressure-dilatation term depends mainly on the den-

2 which, in turn, is proportional to the temperature flue-sity fluctuation variance %

tuation variance tr_. = T '2 according to the relation

_rp ¢rT

T

The temperature fluctuations are accessible to measurements, and the temmperature
variance try, is a byproduct of the model computations of the heat flux T'u2 and T.

In Figure 7, the model-computed values of O'T/T are compared with the experimen-

tal data of Kistler (1959). The Kistler measurements were made in an adiabatic

boundary layer for three different freestream Mach numbers M = 1.72, 3.56, 4.67

and are also tabulated in Fernholz and Finley (1977). It is evident that the model
predicts a correct tendency of the o'r-levels with M.
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FIGURE 6. Mean temperature profiles, otherwise same as in Figure 5.

3. Future plans

The focus of current and future work is investigation of the rapid compression

and distortion processes taking place when turbulence passes through a shock or a

succession of shocks in the compression corner flow. A numerical scheme has been

developed which is capable of simulating the mean and turbulence flow field of a

nonseparating boundary layer negotiating a compression corner. The scheme uti-
llzes the yon Mises' coordinate transformation as in Zeman (1990), and the pressure

gradient is calculated with the aid of the method of characteristics using the actual
velocity profile as the upstream conditions. Preliminary comparison with experi-

mental data for Reynolds stresses by Smits and Muck (1987) is encouraging. The

model resuits indicate that the rapid directional compression mechanism discussed
above has considerable influence on the response of turbulence to the compression

corner-induced distortion of the mean flow.
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FIGURE 7. Profiles of temperature fluctuations in an adiabatic boundary layer:
model comparison with the Kistler (1959) experiment.
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Analyses and modeling of evolving turbulent flow

By P. A. Durbin

Work done during this year includes: an asymptotic analysis of adverse pressure

gradient boundary layers (Durbin and Belcher 1991); a rapld-distortion analysis of

homogeneous, compressed turbulence and formulation of a new pressure-dilatation
model therefrom (Durbin and Zeman 1991); and refinement of the k- e- v near-wall

model (Durbin 1990), with extension to calculations of heat transfer.

1. Motivation and objectives

The ultimate motivation for this work is the development of analytical models

for turbulence statistics. The approach which I have adopted is to attempt to use

theoretical results as guidance for model development. For example, in last year's

report (Durbin 1990), I described a near wall model which was motivated by analyses
of kinematic blocking; in section 4 of the present report I will describe further

computations with that model. These consist of calculations of the turbulent fiat-

plate boundary layer, including heat transfer, and of heat transfer calculations for
channel flow. The calculations are compared to experimental and DNS data. This

work on near-wall turbulence modeling is still in progress; Dr. S. Ko is incorporating
the model into an elliptic code, so that more complex flows can be computed (see

Ko's article in this volume).

In anticipation of future computational work and modeling of more complex

boundary-layer type flows, an asymptotic analysis was done of the structure of

strongly adverse pressure gradient (APG) turbulent boundary layers. This was mo-

tivated by previous asymptotic analyses of zero pressure gradient (ZPG) boundary

layers (Mellor 1973) and the semi-empirical observation (Townsend 1976) that the
adverse pressure gradient boundary layer has a yl/2 region, where y is distance from
the surface. At the outset, it was supposed that the two region (wall and wake)

ZPG scaling could be modified so that a yl/2-1aw would replace the logarithmic

overlap law. However, the half-power law did not permit a proper overlap of wall

and wake regions; a third, intermediate region seems to be required (see fig. 1).
The results of this investigation are summarized in section 2 and in Belcher's article

in this volume.

As a result of discussions with Gary Coleman and Otto Zeman, I felt that a rapid-

distortion analysis of homogeneously compressed turbulence might help to gain an

understanding of some effects that occur in compressible flows. In particular, of

the pressure-dilatation term in the turbulent kinetic energy equation, which would

seem to be important in flows with shock waves or in compression corners or pistons

(Zeman 1991). A rapid distortion analysis for the small turbulent Mach number
limit is described in section 3. It is shown how the magnitude of pressure-dilatation

correlation depends on the symmetry of the compression, vanishing for spherical
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symmetry and increasing with asymmetry. The RDT analysis and invariant clo-
sure modeling suggest a model for pressure-dilatation; that model will be discussed

briefly.

2. Asymptotic scaling of adverse pressure-gradient boundary layers

Because of the summary nature of the present report, the reader is referred to

Durbin and Belcher (1991) for details. We consider a uniform density, incompress-

ible turbulent boundary layer subject to a strong adverse pressure gradient (APG).
The free-stream mean velocity is Uoo(z). The kinematic pressure-gradient, denoted

by _, a streamwise length scale L, and viscous pressure-gradient velocity u v are
defined by

- -UooU z ; L - up - 113. (1)

The definition of up reflects the fact that the relevant dimensional parameters near
the wall are v and a. The small parameter in the present analysis is

e.-_ up/Uoo = (l/ot/UL) 1/3 = RL 1/3 (2)

where RL is the Reynolds number based on L. 6 denotes a scale for the boundary

layer thickness. It is sufficient (although not necessary) to let 6/L -,, e; this gives the

appropriate leading order balance between pressure gradient and turbulent shear-

stress gradient in the middle and outer regions. Given this ordering, one can define 6
such that this latter relation is an equality. In most of the analysis, it is appropriate

to think of 6/L as the small parameter. The middle and outer regions are inviscid
to lowest order, so it would be misleading to associate the small parameter with

Reynolds number in these regions; perhaps (2) should be expressed as Rt, = e-3.

The three asymptotic regions of an APG turbulent boundary layer reflect three
velocity scales which exist in such a flow. They are: the viscous, pressure-gradient

velocity, Up; the free-stream velocity, Uoo; and v/a6. The first is used to non-
dimensionalize the mean velocity in the wall region, the second nondimensionalizes

the wake region, and the last nondimensionalizes the middle region. Another ve-
locity scale is the friction velocity, u.. In the present analysis this is taken to be of

the same order as Up. The three regions and their scaling are shown schematically

by figure 1.

Scaling of the regions

The thickness of the inner region is v]up, or e2L. Here the leading order balance
is between pressure gradient, viscous, and turbulent stresses. The mean momentum

equation, in non-dimensional form, becomes

((1 -{-D,)Uo) 0 = 1 + O(e 2) (3)

where U = U/up, f,, = vt/v is the turbulent eddy viscosity, and 0 = YUp/V.

In the middle region, the leading order balance is between pressure gradient and

turbulent stress. The precise scaling depends on how the turbulent stress is modeled.
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FIGURE 1. Schematic of structure of APG boundary layers. The experimental

data is from Bradshaw and Ferris (Coles and Hirst 1968).

In general, the thickness of the middle region is O(e"L) where 1 < n < 2. If the
eddy viscosity is constant in the outer region, then n = 4/3, which is the case

described here. The mean momentum equation simplifies to

(v,O_)_= 1+ o(_4/3). (4)

where _" = U/U,_e 3/2, and vt = vt/Ucc6e.

The outer region balance is between pressure gradient, turbulent stress, and in-
ertia. The mean momentum equation becomes

tY_,

in the outer, wake region. Here U = U/Uoo, _ = y/S, V = V/U_ce, Vt = r,t/U_6e

and d_ = dz/L. V is determined by the continuity equation, which can be written

+ ,_- _- _ =0. (6)

In (5) and (6) an _ dependence of Uoo and _ has been allowed; this dependence is

required in the self-similar solution cited below.
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The half-power law describes the overlap layer between the inner and middle

regions. It exists because of the linear variation of shear stress in a strong APG
boundary layer: r = ay+u2.. The half power can be derived when I/>> u2./_ from

a mixing length argument (Townsend 1976). However, because of its relevance to

closure modeling, I will note here that the standard k - _ model has the solution

U=A.y 1/2 (7)

with

A_=
4(*rk -- 3Ce,*re)(at - 3Ce2_,)

2 2C, ka. (C.. - C,,)2

in a linear stress layer. With the commonly used values,

Ce, = 1.44; C,, = 1.92; C_, = 0.09; at = 1.0; a_ = 1.3

this gives A. = 7.65.

Self-similar solution

The problem posed by (3)-(6) must be solved subject to U = 0 at It = 0 and
U ---, Uoo as y _ c_. In an asymptotic framework, such a solution requires formal

matching between the regions. With the present eddy-vlscosity representation for
the turbulent shear stress, it also requires a prescription for vt. Omitting details,

which can be found in Durbin and Belcher (1991), the analysis reduces to solving
(5) and (6), with the Clauser viscosity _'t = Cc6., subject to the conditions

2 2-0(0) = 0,(0) = + 9(0) = (8)

and 0 ---, 1 as 0 ---*co. 6'., G'. and C_ are constants determined by the inner and

middle region solutions. They are given by equation (4.26) of Durbin and Belcher

(1991) for the eddy viscosity formulation adopted in that paper.

For a self-similar boundary layer, the pressure gradient enters through the pa-
rameter

d6 / dU_

which appears in the self-similar version of (5). For the power law Uoo o¢ z-" and a

linearly growing boundary layer thickness,/3 = 1/a. Figure 2 shows a computation

of normalized friction velocity, u./u r versus /3. This figure shows an interesting

property of the analysis: the skin friction is a double valued function of pressure
gradient. In figure 2, this occurs in a small range near/3 = 4.8. Thus, for a given

pressure gradient, two self-similar boundary layers exist: one with small skin fric-

tion, for which the downstream increase of the momentum thickness is largely bal-

anced by pressure gradient; and one with larger skin friction, for which the growth
of momentum thickness is largely balanced by skin friction. These double valued

boundary layers have been observed experimentally by Clauser (1954). Further
results of the analysis can be found in Belcher's article.



Analyses and modeling of turbulent flow 123

n.

10

8

6

4

0 ....

4 5 6 7 8 9 I0

FIGURE 2. Friction velocity versus pressure gradient parameter for self-similar

APG boundary layer.

3. Rapid distortion theory for compressed homogeneous turbulence

An RDT analysis of compressed homogeneous turbulence was undertaken in con-

junction with research in progress at CTR on simulation and modeling of com-

pressible homogeneous turbulence (Coleman and Mansour 1991, Zeman 1991). The

method of analysis is not novel; the motivation was to gain an understanding of

and to model the pressure-dilatation term in the turbulent kinetic energy equation.

Analysis

RDT analysis is based on the assumption that the time-scale for distortion by

mean strain is short compared to that for self-distortion of the turbulent eddies

(Hunt 1973). Linearized equations are solved for the evolution of the turbulence

from an initially isotropic state.

The requirement for homogeneity is that the mean pressure, density, and velocity

gradient be uniform in space. Thus, the mean velocity is of the form U = x • S(t).

An irrotational mean flow is considered. In a princlple-axes coordinate system, the

mean momentum equation requires S to have the time dependence

+ 0 0 )
S = 0 a2/(1 + a2t) 0 (9)

0 0 a3/(1 + a3t)

where the ai's are arbitrary constants. To facilitate this discussion of the RDT
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solution, we introduce the matrix of material line distortions

11(1+alt) 0 0 )
J= 0 11(1+a2t) 0 . (10)

0 0 1/(l+ast)

Given that p is spatially uniform and that DU/Dt = 0 and Dp/Dt = -pV. U,

the linearized, inviscid fluctuating momentum, continuity, and entropy equations

can be written (Goldstein 1978)

p(Du'/Dt + u'.VU) = -Vp'

m(p'/p)/Dt = -V. u'

Ds'/Dt = O.

(11)

An important relation between pressure-dilatation and pressure variance follows

from (11):

= (12)

where 7 istheratioofspecificheats.Our primary resultsand new developmentson

closuremodeling derivefrom (12).Although the equationforentropyfluctuationsis

includedin(11),becausethe mean pressureisuniform,vorticalfluctuationscannot

be produced from entropyfluctuationsinhomogeneous turbulence.

In general,the solutionto (11)isfacilitatedby Goldstein's(1978)decomposition

ofthe fluctuatingvelocityintoirrotationaland vorticalparts.However, forthe spe-

cialcaseofhomogeneous turbulence,the Helmholtz decompositionintoirrotational

and solenoidalpartscan be used. Wc firstintroducea Fourierrepresentation(Hunt

1973):

/;U t = _leik(t) "x dSk0
oo

in which k(t) = k0 • J. Then the Helmholtz decomposition can be written

fi= [fio'J kk.fio.J]]'k-_ +ik¢ (13)

where the bracketedterm isthe solenoidalcomponent--that is,itisorthogonalto

k. fi0isthe in{tialsolenoidalvelocity.In consequenceof (11),¢ satisfies

d , _2d¢, . d ( d k rio J)_tc -dT)+lkl2¢---,_ c-2 " "
dt Ikl2 "

(14)

¢ is the only quantity for which an equation has to be solved.

The details of the analysis can be found in Durbin and Zeman (1991). Here,

we simply note that when the fluctuating Mach number is small, the right side of

(14) can be neglected to lowest order of approximation. Then the solenoidal and
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FIGURE 3. Solenoidal contribution to pressure variance and pressu___redilatation
for axisymmetric compression with J1 = 2 and ,/2 = ,/3. Solid line is p,2 dashed line
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irrotational (acoustic) components decouple. Correspondingly, the pressure can be
separated into an a_oustic component and a solenoidal component. The solution

for the solenoidal pressure works out to be

P"-2=3q2 L_p2 j_o2'r fo'r27r(e. j2. e)2
X

(e. 5 2. e) - 2(e" S. e)(e. 5. J:_. e) + (e. 5. e):(e, j4. e)] sin0d0d$e.j2.e
(15)

where e = (cos 0, sin 0 sin _b,sin 0 cos _b) and q0 and L0 are initial velocity and length

scales, and in which 5 = J. S • J. After evaluation of (15), the pressure-dilatation

is determined by (12). For axisymmetric compression, the integrals in (15) can be
found in closed form.

Figure 3 shows results for the solenoidal component in an axi-symmetric com-

pression. The Ji's denote the diagonal components of J in equation (10). When
J2 = J3 = 2, the compression is spherically symmetric and the pressure variance



126 P. A. Durbin

wishes. The pressure-dilatation increases monotonically as 3'2 decreases toward

1; hence, pressure-dilatation increases with increased asymmetry of the compres-

sion. DNS by Coleman and Mansour (1991 and Coleman private communication)

show that pressure dilatation is very much larger for one-dimensional compression

(J2 = 1) than for spherically symmetric compression (J2 = 2). Hence, the RDT
results are in accord with DNS.

Modeling

The success of the RDT analysis suggests that (12) might be made the basis

of a closure model; all that is required is an expression to substitute for f2 on

the right side. Of course, this equation is only complete when the distortion is

rapid; more generally, non-linear terms cannot be ignored. However, the pressure-
dilatation term in the turbulent kinetic energy equation is only important when

the turbulence is subject to a rapid change--produced, e. g:, by a shock wave or

by compression inside a cylinder--hence, the linearized formula might cover many
practical cases.

Attention is again restricted to low fluctuation Mach number so that the solen-

oidal and acoustic contributions can be decoupled. Zeman (1991) has proposed an

equation for the acoustic contribution to p2 which was adopted here. The solenoidal

contribution can be modeled by making use of standard invariance and symmetry

constraints (Lumley 1978). If the solenoidal pressure is expanded about isotropy,
keeping only the first order terms in anisotropy, one finds that

p"_s2 -- (pqL) 2 [C, Tr(S. 2) ÷ C2b,1S2.,i ] + O(llbll 2) (16)

where b_1 = u-7_/q 2 - 6_i is the anisotropy tensor; q2 = u_ui/3 is the turbulent

intensity; L is a length scale; and S, ij = Sii - 6iiTr(S)/3 is the trace-free part of S.

Equations (12) and (16) were incorporated into a model described in Zeman (1991).
That model contains an equation for L which accounts for the effect of compression

on the length scale. Values for the constants C1 and C2 in (16) were obtained by

requiring (16) to agree with the RDT solution at short times. This gives C1 = 6/5
and C2 = 18/7.

Figure 4 shows a model computation compared to data provided by Gary Cole-
man. The compression is one-dimensional, and the horizontal axis, r, is a nondi-

mensional time, related to compression ratio by J1 = 1/(1 - r). The curve labelled
--lid is the pressure-dilatation. The rate of energy dissipation is not shown because

it is extremely small in this computation of raid compression; the dominant balance

in the turbulent kinetic energy equation is between production, pressure-dilatation,

and rate of growth. The agreement between model and data is satisfactory and sug-

gests that (12) and (16) are a viable approach. The effects of non-homogeneity and,
at higher turbulent Mach number, the coupling between acoustic and solenoidal

components would have to be included in a more general model.

4. The k - e - v model for boundary layer flow and heat transfer

The k - e - v near-wall turbulence model was described in last year's report

(Durbin 1990). Progress on further development and application of the model has
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FIGURE 4. Comparison of model (lines) to DNS data (symbols) for rapid one-
dimensional compression (case cldb of Coleman and Mansour 1991). r is a non-

dimensional time.

been a bit slower that expected. Here I will present results for flat plate boundary

layers and for heat transfer in channel flow.

Refinement_ for boundary layer computation

The 'refinements' referred to in this subsection heading are small adjustments in

the model constants, no alterations to the equations were made. The model was

originally developed by making use of channel flow DNS data. Because this is a
very simple flow, the model constants could be set fairly coarsely. In the boundary

layer, the need to predict the growth rate of the thickness requires more refined
values of the constants. I have also tried to bring the constants into line with

values used by other modelers. For example, the e-equation constants C, l and C_
were previously set to the round numbers 1.5 and 2. They have now been set to

more conventional values of 1.44 and 1.9. (It should be noted that an important

quantity is the difference between these constants; also, my e-equation contains a

'local anisotropy' term (Durbin 1990), so that C_ t has a slightly non-conventional

meaning.) I have also changed Ct, from 0.2 to 0.23; Launder (1989) uses 0.22.

The channel flow was recomputed and the agreement to DNS data was unchanged

(see figures in Durbin 1990), with one caveat. The 'Prandtl numbers' ak and a,

were left at their previous values of 1.3 and 1.6 (Durbin 1991). These values were
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FIGURE 5. Model (lines) and DNS (symbols; Kim and Moin 1989) temperature
profiles for turbulent channel flow at three molecular Prandtl numbers: R_ = 180.
LX, Pr = 2.0, ×, Pr = 0.71, e, Pr = 0.1.

obtained by requiring the centerline turbulent intensity to agree with the DNS data
(at Re,. = 395). Because a boundary layer has a free-stream interface across which

irrotational fluid is entrained, the transport of kinetic energy to the edge of the

boundary layer is greater than in a channel flow; hence, the above Prandtl numbers

had to be lower for the boundary layer computation--at = 0.9 and ae = 1.3 were

used, which are in line with values widely used for flows with a free stream (Launder,
1989, uses 1.0 and 1.3). The fact that different values of ak and ae are required
for enclosed and unbounded flows indicates that an aspect of the fluid mechanics

(the irrotational-rotational interface) is not being represented by the differential

equations of the model, and must be incorporated through the constants. This

statement applies to other models, such as k - _, and is not a peculiarity of the
present model.

The mean temperature equation

v. vo = -o,(v0, - 40,0) (17)

was included in the model to compute heat transfer. In most computations, -v0'

was represented by the eddy diffusion formula atOq_O, with turbulent diffusivity
determined by

Prtott= vt = Ct, v2T (18)

where Prt is the turbulent Prandtl number for heat transport. Temperature.profiles

for channel flow were also computed with a vOt differential equation.
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Figure 5 shows model computations and DNS data of Kim and Moin (1989) for
temperature profiles in channel flow with a heat source. The Reynolds number based

on friction velocity and channel half-height is 180. The computations were done at
molecular Prandtl numbers of 2.0, 0.71, and 0.1, as indicated. These computations

were done with a v-_ equation, but virtually identical results were obtained by

setting Prt = 1.0 and using equation (18). These figures illustrate my previous
statement that the refinements to model constants did not deteriorate the results

for channel flow.

Flow in flat-plate boundary layer

A boundary layer code was written to solve the model equations in Von-Mises

coordinates (_ - z), with an expanding grid to allow for boundary layer growth.

With the exception of at and a_ as discussed above, the model was identical to
that used for the channel flow computations. The computation was initialized

with profiles of U, k, e, and v--Ttaken from Spalart's DNS data base (Kim private
communication); Spalart's profiles for Re = 670 were used, although similar results

were obtained using his R# = 300 profiles. For heat transfer computations, the

initial mean temperature profile was given the same shape as the mean velocity

profile.
In figure 6, a curve of skin friction versus momentum thickness Reynolds number

is compared to experimental data. The agreement is very encouraging. A more de-
tailed comparison is given by figure 7, which shows mean velocity profiles compared
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FIGURE 7. Mean velocity profiles in the range 1400 < R0 < 11000. Variables are

plotted in wall (+) units. Experimental data is from Coles and Hirst (1968).

to experimental data at several Re's in the range covered by figure 6. Again, the

agreement is good. Thus, a good prediction of C! correlates with a good prediction
of the entire mean velocity profile (a similar correspondence does not prove true for

the heat transfer results presented below). Although the profiles with the lower Re's

are somewhat compacted in figure 7, expanded plots would show that the agree-

ment to the data is as good as at higher Re; thus, the experimental dependence
of the mean velocity on Reynolds number is reflected in the solution to the model

equations. Even_further detailed comparison is given by figure 8, which contains
data for k and v 2 transcribed from a figure in Klebanoff (1955, these data are also

shown in Townsend 1976). In this case too, the agreement is satisfactory.

One objective of the near-wall model was to predict non-equilibrium boundary
layers. A preliminary result in this direction is included in figure 9. This shows a

computation of a boundary layer developing into an increasingly adverse pressure
gradient; the pressure distribution imposed on the boundary layer is that provided

in table 1 of Samuel and Joubert (1974). The primary purpose for their experiment

was to provide non-equilibrium boundary layer data for model testing. An initial

condition was required for the computation: this was obtained by starting with a
zero pressure gradient boundary layer slightly upstream of the first measurement
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FIGURE 8. Turbulent kinetic energy (upper) and v 2 compared to data transcribed

from Klebanoff (1955; circles and dashed lines): Re = 7150. y is normalized by

6.995 and turbulent intensities by u 2.

location, then subjecting it to the initial pressure gradient reported by Samuel

and Joubert. The upstream distance at which the pressure gradient was imposed
was determined as follows: at the first measurement location, Re = 4,992, while

Cf0 = 2.79 x 10-3; a ZPG boundary layer at this Re would have C! = 3.0 x
10 -3. It was found that the correct initial friction coefFicient could be obtained

by applying the pressure gradient to a ZPG boundary layer with Re = 3,200 and

allowing it to develop downstream to the position where Re = 4,992, so this is

how the computation was initialized. Figure 9 shows that quite good agreement

is obtained with the experimental skin friction data. The abscissa is downstream
distance in meters because this is how Samuel and Joubert report their data; for the

computations, the reported value of unit Reynolds number dRe/dx = 1.7 x 106m -1

was used to nondimensionalize both distance and the C v gradient reported in Samuel

and Joubert's table 1. They also define Clo as the friction coefficient based on an

upstream reference velocity. The results in figure 9 are particularly pleasing because

Rodi and Scheurer (1986) showed that the k - _ model with an eddy viscosity

'damping function' was unable to predict this flow: it gave friction coefficients which

were considerably too high. The present model also shows qualitative agreement
with data on the evolution the k and v2 profiles and quantitative agreement with

their magnitude; for brevity those results are not shown here.

Heat tran_.fer in boundary layer

Heat transfer computations are compared to experimental data of Reynolds et
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FIGURE 9. Skin friction versus downstream distance for boundary layer developing

in adverse pressure gradient. Data from Samuel and Joubert (1974, table 1); solid
line, present model.

al. (1958); Moffat and Kays (1984) describe these data as representative of those

obtained at Stanford over the course of 25 years. Figure 10 shows Stanton number

versus momentum thickness Reynolds number. The molecular Prandtl number is

0.71, corresponding to air. The calculations were done with Prt = 0.9, shown by

the solid curve, and with Prt given by the formula

1.7
Prt (19)

1 ÷ 0.4Pet + O.08(e -5/P'' - 1)Pe_

as shown by the dashed curve. In (19) Pet is the turbulent Peclet number vt/a.

Formula (19) is the Prandtl number-Peclet number relation given in Moffat and

Kays (1984; eq. 53--after correction of a typographical error). This formula has
the property of rising steeply near the wall, reaching 1.7 at y = 0, and tends to

0.85 far from the wall. A steep rise of Prt is seen experimentally when y+ < 15

(Moil'at and Kays). Both of the curves in figure 10 are within the data scatter:
the constant Prandtl number curve (solid) would seem to be in slightly better

agreement, although the two curves are within 10% of each other.

Figure 11 shows measured and computed temperature profiles at two values of R0.

There is a clear discrepancy between the model and data. Formula (19) was intended

to improve the agreement between model and experimental temperature profiles.

One sees that at the higher Reynolds number it does produce some improvement.
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FIGURE 10. Stanton number versus momentum thickness Reynolds number. Data

from Reynolds et al. (1958). Model results for two prescriptions of the turbulent
Prandtl number are shown: solid line Prt = 0.9; dashed line eq. (19).

5. Future plans

The work on near wall turbulence modeling will continue into the future. Model

computations of more complex boundary-layer flows will be carried out in collabo-
ration with Dr. Ko. The application to heat transfer will be pursued further. The

present type of modeling proceeds through formulation of differential equations for
turbulence statistics; in the k-e- v model I have tried to introduce empiricism only

through model constants, while the spatial distribution of the statistics is obtained

by solving equations. The use of (19) is somewhat out of keeping with the spirit
of this approach. I hope to replace such a prescribed Prandtl number relation by a

v--0-equation whose solution would produce the same effect. At present, however, it
is not clear how the correct near-wall behavior of v'0 should be obtained.

As I have mentioned, the work on compressed homogeneous turbulence was moti-

vated by the work of others at CTR. I would hope to pursue some of the issues raised

by this material with them. For instance, when the turbulence is not homogeneous

(as near a shock wave), the kinetic energy equation contains the term

= ,, - a+u+f. (20)

The first term on the right side of (20) was modeled here by (12). The second
term is often referred to by the seemingly inappropriate name 'pressure diffusion'.

(I know of no analysis which leads to a Markovian representation for this term;
indeed, it is hard to see how pressure forces become diffusive). This term is not
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FIGURE 11. Temperature profiles compared to data from Reynolds et al. (1958)
at R0 =1763 (.) and 4432 (x). Temperature is normalized by the temperature

difference across the boundary layer, and y is in + units.

peculiar to compressible turbulence, as is the first. In many flows it is negligible,
but near to shocks it requires some form of modeling. It would also be desirable

to extend the RDT solution to higher turbulent Mach number, where acoustic and

solenoidal fluctuations interact strongly.
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1. Motivation and objectives

As a turbulent boundary layer undergoes a strong adverse pressure gradient, the

flow may separate from the wall, and the use of empirical wall functions is inap-

propriate. The turbulence transport equations as well as the momentum equations
must be solved through the laminar sublayer to the wall. The laminar sublayer

encompasses a region where viscous effects become increasingly important. For the
past two decades, many proposals for near-wall turbulence models of k-e type have

been presented for calculating near-wall flows. A thorough review and a systematic

evaluation of these models was given by Patel, Rodi, and Scheuerer (1985): they
found that some of the models tested failed to reproduce even the simple flat-plate

boundary layer flow. Overall, the authors concluded that the near-wall turbulence
models needed further refinement if they were to be used with confidence to calcu-

late near-wall flows.

Recently, the use of a direct numerical simulation (DNS) data base has provided

new insight and data for development and testing of near-wall turbulence models.
Mansour, Kim, and Moin (1989) computed the budgets for the turbulence kinetic

energy and its dissipation rate using DNS data of a channel flow (Kim, Moin,

and Moser, 1987). These computed budgets were used to test existing near-wall
turbulence models. They also analyzed the dependence of the eddy-viscosity damp-

ing function f, on y+ and the Reynolds number using DNS data for a flat-plate

boundary layer (Spal____t, 1988). Durbin (1991) proposed the k-e-v model. By using
normal fluctuation v 2 as a velocity scale instead of turbulence kinetic energy k in

the eddy-viscosity relation, the k-e-v model eliminated the need for damping func-

tions f, . The model retained a modeled equation for v2 in addition to the k and
e equations. This model was implemented into a parabolic program and showed
satisfactory agreement with the DNS data of the channel and boundary layer flows

(see article by Durbin in this volume).
The objectives of the present study are : (a) to implement the k-e-v model into

a computer program which embodies the complete elliptic form of the 2-D, incom-

pressible Navier Stokes equations for steady-state turbulent flows, (b) to make an
assessment of the k-e-v model by comparing predictions with DNS data as well as

experimental measurements for various turbulent flows, (c) to make improvements
and extensions of the modeling, if warranted, and (d) to provide the application

of the k-e-v model for predicting separated boundary layer flows. At the present

state of the research, the implementation has been completed and the assessment

is in progress. In this report, a brief summary of numerical methods is presented,
followed by results of testing of the numerical methods. The implementation of the

p,AOB_It, tT[NTL_,',b%L,"(8LANit PRECEDING PAGE BLANK NOT FILMED
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k-e-v has been confirmed by comparing predictions with the DNS data of the chan-

nel flow at Rcr = 180. In order to assess the new model, a series of computations

will be compared with measurements of popular test cases covering several types of
turbulent flow.

2. Accomplishments

The accuracy of a numerical prediction rests on the excellence of the turbulence
model as well as on the accuracy of the numerical methods used to solved the

modeled equations. For simple turbulent flows, most of the difficulties associated

with numerical predictions are the lack of physical understanding and consequent

inadequacies in the various turbulence models used. On the other hand, for complex
turbulent flows, not only the turbulence models but also the numerical methods are

in question. As the first step of the study, the accuracy of the numerical methods
was investigated.

_.I Numerical methods

_.1.1 Governing equations

The__governing equations for conserwtion of mass, momentum, and transport of
k, e, v2, and 7922 are :

Ou_
o%-7= o. (1)

---_-+ v,vj= _b--_.+b-i.j.(,,+_,,)_,_-j/j+ ax,/j

vt Ok )ok ok o__(ok+ Uk_-_z_ =79-e+ Ozk \ Ozk + ak

(2)

(3)

o f o, v,o,)o, a, +--+ 0z_ a, Ozk

cgv_ o%---¢ v_ 0 [" Ov_ vt 0_ )

L2V2 f_2 - f2_ (1 - C_) (2 -_ 79= _- ,_-T)-c,T

where vt is the eddy viscosity

(4)

(5)

(6)

vt = C,,-_T,

T is the time-scale for the evolution of •

(7)

T = max(k/e, CT(v/e)'/2), (8)

79 is the production of turbulence kinetic energy
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aUi
7' = -_--_'-_--, (9)

oxj

922 is a source term which combines the effects of pressure-velocity correlation and

anisotropic dissipation

P22= k/22,

and the length scale L is expressed as

L = CL raaz(k3/2/e, C.(_3/e)_).

(lo)

(11)

Detailed discussion of the k-e-v model and its boundary conditions can be found

in the report by Durbin (1991),

,_.I. _ Numerical procedure

The k-e-v model was implemented into a finite difference computer code developed

for solving the 2-D, incompressible, steady-state turbulent flows. This program
is based on previous finite difference procedures used in the TEACH computer

program of Gosman and Pun (1974).
The governing equations (1) through (5) may be expressed in the general form

-6-;_j- o_t_j = s_ (12)

where ¢ represents any of the dependent variables, ve is the effective viscosity, and

the source S¢ contains any remaining terms. The primitive variables are solved on
a system of staggered grids. This discretization is based in all cases on the control

volume approach which ensures that the cgnservation principle embodied in the
continuum equations is preserved in the numerical analog. Following this approach,

the governing equations are formally integrated over the appropriate control volume

by applying the Gauss theorem.
The result is

0¢

where the A's represent the areas of the cell faces in four compass-point directions

(n,e,s,w) located mid-way between the grid points, and Vc represents the volume of
the cell.

The next step in formulating a finite differencing equation is the assumption of

the ¢ profiles between any two grid points. The diffusion terms are formulated

using a central differencing scheme; since this is common practice, nothing further

need be said about them. Attention is directed to the convection terms, for it is

the approximations that are used for these terms that can lead to the generation of
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artificial viscosity. The schemes that are used to approximate the convective terms

only refer to the differencing of convected quantity _b; the convecting velocity is
diseretized using the central differencing scheme. In the present computer code, the

QUICK (Quadratic Upstream-weighted Interpolation for Convection Kinematics)

differencing scheme of Leonard (1979) was used in order to reduce the error due to
the artificial viscosity.

Upon collecting terms in the finite difference equations, the generic differential

equation can be put into the discretized form

(14)

where

i

Here the subscript j denotes the neighbor grid points of the point P. The B's are

coefficients consisting of contributions from diffusion and convection,: and the S's

are the linearized source terms. Obviously, the B's and S's are uniquely formulated
for each differencing scheme.

The direct methods for solving the above finite difference equations require ex-

cessive storage and computer time. Therefore, an iterative method for solving the

algebraic equations is employed. The computation sequence starts with guesses for

the velocity field and related quantities. For the first step, the SIMPLER (Semi-
Implicit Method for Pressure Linked Equations, Revised ) algorithm of Patankar

(1980) is used for obtaining the pressure field from the pressure equation which is
derived from the continuity and momentum equations. Next, the axial and radial

momentum equations are solved for U and V velocity components, respectively.
Then, in order to conserve mass locally, a correction of velocity is completed via

a with the pressure-correction equation, which is also derived from the continuity

and momentum equations. Finally, the turbulence transport equations are solved,

and the effective viscosity is updated accordingly. The newly obtained flowfield is

treated as an improved guess and the process returns to the first step. This iterative

procedure continues until convergence.

The discretization equations are linear and are solved line-by-line using the Tri-

Diagonal-Matrix Algorithm ( TDMA ) applied in an ADI (Alternating Direction
Implicit) manner.

P,.I_ Testing of numerical techniques

_.ILI Laminar flow in a driven cavity

A driven cavity problem has been an ideal non-linear problem for testing new

numerical schemes and as a benchmark solution for making comparisons among
various schemes using different methods of problem formulation, discretization, it-

eration, and approximation. The geometry and the boundary conditions for the

flow are the same as those of the Kim & Moin's (1985) computation.
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FIGURE 1. Streamlines and contours of constant vorticity for a driven cavity

After grid independence testing, final predictions were made with two different
uniform grids: a 50 x 50 grid for flows with Re < 1000 and a 100 x 100 grid for
flows with Re > 1000. Three differencing schemes (QUICK, central, hybrid) were

tested for this problem with Reynolds numbers up to 5000. However, a converged
solution could not be obtained for Re = 5000 with the central differencing scheme.

Predictions are compared with those by Kim & Moin (1985) and by Ghia et

al.(1982). Figure 1 shows the predicted streamlines and contours of constant vor-

ticity for three different Reynolds numbers. At Re = 1, the streamlines are sym-
metric because the convection terms are negligible. At Re = 400, these convection

terms have begun to dominate the flow, producing a core of nearly uniform vortic-

ity. Note that the vortex center shifts in the direction of the boundary velocity. At
Re = 2000, the core of the primary vortex becomes almost inviscid and shows a

symmetric structure about the center of the circle. As observed by Kim & Moin,

a secondary vortex starts to develop at the upper-left corner of the cavity at this

Reynolds number.

Figure 2 shows the distribution of the streamwise velocity at the middle plane of
the cavity for Re = 400. The present solution shows close agreement with the solu-

tion by Kim and Moin (1985). Since the non-linear effect of the convection is small,

the QUICK, the central, and the hybrid schemes show little difference. However,
as shown in Fig. 3, these schemes show a significant difference when the Reynolds

number is high. It is obvious that the hybrid scheme suffers from artificial viscos-

ity. Overall, it is found that the QUICK scheme is stable and accurate, the central
differencing scheme is accurate but unstable, and the hybrid differencing scheme
is stable but inaccurate. Figures 4 and 5 show the predicted stream-function and

vorticity at the center of the primary vortex, respectively. As observed previously,
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the QUICK scheme provides the most reliable solutions.

_.2.2 Laminar flow over a backward-facing _tep

For the second test problem, the laminar flow over a backward-facing step has

been chosen. The detailed description of the problem can be found in the work

of Kim and Moin (1985). A 100 x 100 uniformly-spaced grid was used for the

computations.

Figure 6 shows predicted reattachment lengths in comparison with the experimen-

tal and the computational results of Armaly et al. (1983) and the numerical results
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of Kim and Moin (1985). Using the central differencing scheme, converged solu-

tions were obtained for flows with Reynolds numbers up to 600. It should be noted

that Armaly et aI. (1983) used an upwind differencing scheme for the convective

terms. That might explain why his computations show such a poor performance.

The QUICK scheme shows its ability in predicting the reattachment length fairly

well.

The length of the secondary bubble on the flat upper wall is a good indication

for the performance of the numerical schemes. Figure 7 shows a comparison of the
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FIGURE 7. Secondary bubble length as a function of Reynolds number

_.5 Testing of the k-e-v model

The k-e-v model was implemented into the program described in Sec. 2.1.2. In

order to confirm the correct implementation of the k-e-v model, the channel flow at

Rer = 180 was selected as the first test case, As expected, the predicted profiles
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of the streamwise velocity and the turbulence quantities were almost identical to

those reported by Durbin (1991).
Testing of the present implementation of the k-e-v model is continuing. The zero

pressure gradient boundary layer is being computed and compared with measure-

ments by Wieghardt and Tillmann (1951). This boundary layer is the simplest case
of wall turbulent flows, yet it is of great practical importance. It provides a starting

point for the computation of separated boundary layers.
Separated boundary layers are quite different from zero pressure gradient bound-

ary layers in many ways: (a) they are elliptic, i.e. the pressure distribution upstream

of separation is influenced by the flow downstream of separation, (b) the Prandtl's
boundary layer assumptions are no longer valid due to the rapid increase of the

boundary layer thickness, and (c) the curvature of the streamlines near the separa-
tion has a strong influence on the degree of anisotropy between the normal Reynolds

stresses (Bradshaw, 1973). All these facts make the separated boundary layers hard

to predict correctly.

::=

3. Future plans

The main objective of the research is to develop a near-wall turbulence model

which simulates a large variety of types of flow without ad hoc adjustment. Also,

the model has to be easy to use. Therefore, the main difficulties of the model

development is to select a universal set of differential equations and then to provide
the required closure constants. In this point of view, the equations of the k-e-

v model, originally developed by Durbin (1991), will be carefully extended and

improved for two dimensional elliptic problems.
In order to account for the anisotropy of the turbulence stresses, the possibility

of using the tensorial form of the eddy viscosity will be studied, i.e.

uij = C_,u-7_T. (16)

Furthermore, the effects of streamline curvature will be incorporated in the model-

ing. This incorporation can be achieved either by modifying the e equation (Laun-

der et al., 1977) or by modifying the expression of the eddy viscosity ut (Bradshaw,

1973). These new features of the modeling will, of course, make the modeling more

complicated, which is not always desirable.
To evaluate the practical application of the improved k-e-v model, a study of the

momentum and thermal details of separated boundary layers with heat transfer will

be undertaken. As the first attempt, a specified normal velocity distribution along

the free stream boundary will be given in an effort to match a selected experimental

pressure distribution along the wall. This matching may require an iterative pro-

cedure. Solutions by the improved k-e-v model will be compared with solutions by

DNS (Moin, 1991) which is in progress. Prescribed wall temperature distribution

and/or wall heat flux distribution will be added later.
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Modeling turbulent boundary

layers in adverse pressure gradients

By S. E. Belcher

1. Motivation and objectives

The phenomenon of separation of a turbulent boundary layer has important im-

plications in practical applications but remains little understood. The overall aims
of this research are to gain theoretical understanding of the physical processes that

are important in governing the separation and thence to develop closure models to

predict these flows.

The model problem that is considered is an incompressible turbulent boundary
layer on a flat plate that is subjected to a prescribed, external, pressure gradient.

The structure of attached turbulent boundary layers is more complex than that

of laminar layers. The zero-pressure-grad]eat (hereafter ZPG) turbulent boundary

layer has a well known two layer structure with a logarithmic velocity profile at the

common overlap. Many of the existing turbulence models that are used for boundary

layer calculations were conceived and calibrated using data from the ZPG boundary

layer. However, the application of an adverse pressure gradient (hereafter APG) to
a turbulent boundary layer leads to a very different structure because the adverse

pressure gradient alters both the mean flow and turbulent transport properties.
In order to develop improved models for boundary layers, it is, therefore, natural

to start by examining the fundamental differences between the APG and ZPG

turbulent boundary layers.
When taken with reasonable physical assumptions, asymptotic methods provide a

systematic framework that can contribute to our understanding of turbulent bound-

ary layers. Hence much of the effort to date has been in using asymptotic methods

to study the structure of a turbulent boundary layer that is approaching a separa-

tion point, thereby leading to some conception of the important length and velocity

scales that determine the nature of the separation.

2. Accomplishments

The asymptotic structure of a turbulent boundary layer that is subjected to a
strong APG has been investigated in the context of eddy viscosity closure. The

results, which are described briefly in §2.1, show that the APG turbulent boundary

layer is very different from the classical, ZPG boundary layer structure.

The mean point of separation of a turbulent boundary layer may by defined
as the point where the boundary layer approximation of the Reynolds averaged

momentum equations ceases to apply. The asymptotic theory has been extended

to consider whether or not the separation point coincides with the point of zero

skin friction. The results, described in §2.2, suggest that no singularity occurs in

the boundary layer equations at the point of zero skin friction. This is in strong
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contrast to the laminar APG case, where the classical square root singularity of

Goldstein terminates the validity of the boundary layer approximation at zero skin
friction.

The findings of this study lead to conclusions that are rather different than the

results of two other recent investigations. In §2.3, an attempt is made to reconcile
these differences and to highlight the areas of conflict.

IL1 The scaling of adverse pressure gradient turbulent boundary layers

A brief overview of the asymptotic scaling of an APG turbulent boundary layer

is now given. Full details may be found in Durbin &_Belcher (1991). The reader is
also referred to the article by Durbin in this volume.

The free stream velocity is Uoo(z) and a is the prescribed, kinematic pressure

gradient ((1/p)(dP/dz)). The streamwise length scale is then L = U2/a. If 5 is
a measure of the boundary layer thickness, then one small parameter is 6/L. The

second is the reciprocal of the Reynolds number, ReL 1 = u/U_L, and it emerges

that the small parameter in the wall region is e = ReL 1/3. For the purposes of the

formal asymptotic ordering it is sufficient to let 6/L ,_ e. This ordering implies

that the flow is slowly varying, i.e. the eddy turnover time scale 6/u I (where u I is a

measure of the fluctuating velocity) is of the same order as the mean flow advection

time scale, L/U_. The APG turbulent boundary layer is then composed of three
distinguishable asymptotic regions.

In the outer region, the nondimensional variables are distinguished by a tilde:

= yl_, d_ = dxlL, U = UIU_, _T = _rl(U_621L). (1)

Here VT is the eddy viscosity. It is observed experimentally that the velocity deficit

across the outer region is large so that the flow is governed by the full nonlinear

boundary layer equations (cf. the ZPG boundary layer where the velocity deficit in

the wake region is small and the equations can be linearized).

In the middle region, the turbulent transport processes make a transition from

their near wall behavior (where the mixing length ideas are expected to be valid)

to the outer region behavior (where the Clauser, constant eddy viscosity model is

adopted). The nondimensional variables are denoted with an overbar:

= = Ul , = VT/(Uoo_2/L). (2)

The velocity scale is determined by the pressure gradient and the boundary layer

thickness--not the free stream velocity. Matching to the constant eddy viscosity

that is adopted in the outer region determines that 7 = (6/L) 1/3. With these

scalings, the x-momentum equation reduces to a balance between the Reynolds

stress and the pressure gradients.

In the wall region, care must be exercised in defining the velocity scale. The

appropriate choice is the viscous, pressure gradient velocity, defined by

= (3)
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FIGURE 1A. Comparison of computations with experimental data on self-similar

APG boundary layers. Data tabulated in Coles & Hirst (1968): circles Bradshaw

8z Ferris; squares Stratford.

where v is the molecular viscosity. It is inappropriate to use the local friction

velocity, u., because we are concerned with flows that include those near separa-

tion, when the friction velocity approaches zero. Similarly, the classical, 'wall-layer'

length-scale based on the friction velocity, v/u., becomes infinite at zero wall shear

stress and so is clearly inappropriate. The appropriate choice is v/u?, which is

well-behaved when the wall stress is zero. The nondimensional variables, which are

denoted by a hat, then become

= u ,?lv, = Vl.?, = vrl . (4)

The mean :r-momentum then expresses a balance between the gradients of viscous

and turbulent stress and the pressure gradient.

The middle region is required formally because the wall and outer regions do

not have a common overlap. Hence it is not possible to adapt Millikan's overlap

argument and deduce the skin friction relation. Instead, the skin friction law for
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(The experimentaldata setsare from differentx-stationsmeasured in mm from a

referencepoint.)

the APG boundary layer is obtained by solving for the nonlinear flow in the outer

region, with boundary conditions imposed by matching through the middle and wall
regions.

In this preliminary part of the study, self-similar flows were considered explic-

itly. In the outer region, where the Clauser eddy-viscosity model is used, the x-

momentum equation becomes the Falkner-Skan equation. The boundary conditions

were determined from the matching of the walt and middle layers with the outer

region• Figures la and lb show profiles of the self-similar velocity computed using
the present model and comparisons with experimental data.

IL_ On the singularity at separation

The asymptotic analysis of Durbin & Belcher (1991) has been extended to inves-

tigate how a turbulent boundary layer behaves at a point of zero skin friction. This

analysis is now briefly described.
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Physically, the separation of a boundary layer is marked by mean streamlines

moving abruptly away from the bounding surface. Hence separation is associated
with a mean velocity component normal to the wall that is comparable with the

streamwise velocity component. This signifies that the boundary layer approxi-

ma.tion has broken down and the full, elliptic, Navier-Stokes equations govern the

flow. Mathematically, a singularity occurs in the boundary layer equations. The
separation point is, therefore, defined as the point at which the boundary layer

approximation ceases to be valid. It is important to make this definition precise,

because it is not clear a priori that this definition of the separation point coincides

with the point of zero skin friction. Indeed the present results indicate that the

boundary layer approximation holds at, and slightly beyond, the zero skin friction

point.

In the laminar flow, the classical analysis of Goldstein (1948) shows that the

boundary layer equations have a singularity at z,, where the wall shear stress varies

as r_, ¢x _ - z, which does coincide with the point of zero skin friction. The
scaling described in §2.1 is now extended to examine any singularity in the turbulent

boundary layer equations.

The possibility of a singularity at separation is made apparent by an argument

due to Terrill (1960). Consider the x-momentum equation in the boundary layer
approximation (z is the streamwise direction measured such that x = 0 is the point

of zero skin friction). Then, taking 02JOy 2 of this equation and setting y = 0 shows
that

d OU

a0 + alz +.-.

(5a)

(sb)

Where the ai are the coefficients of a Taylor expansion in z of the right hand side of

(Sa). Integration of (5b) over x shows that the wall shear stress varies approximately
as

rw _ v/-2aox +"" (6)

Hence there is a singularity in the boundary layer equations if a0 is non-zero.

In equation (5a), the term d/dz(r_/2) arises from the nonlinear, advection term,

UOU/Oz. The key role played by the nonlinear term in producing the singularity
is to be expected since only nonlinear differential equations have solutions with

moveable singularities.

_._.1 Asymptotic arguments

With the wall-region asymptotic scaling of §2.1, the x-momentum equation be-
comes

0( 00){1 + N = + O( 2) (7)

so that, according to the asymptotic theory, the advection terms in the wall region

are of O(e2). The heuristic argument for the origin of the singularity presented
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above makes itclearthat,in orderforthe singularityto occur in the wall region,

the nonlinearinertialterm, UOU/Ox, must become of the order of a. This can

occur only ifthe strearnwisevelocityvarieson a shortlengthscale_ = e2x, i.e.

00/0_ = O(1). We shalldemonstrate thatthereisno such rapidvariationof_r.

On the _ lengthscale,the pressuregradient,which by definitionvarieson the

x = O(1) lengthscale,isconstantso that,in thisstudy,itissufficientto consider

a constantAPG, i.e.a = constant.

The solutionfrom Durbin & Belcher(1991)forthe leadingordercontributionto

the streamwisevelocityinthe wallregionmay be written

= Jo i  -TT (s)

For an adverse pressure gradient of constant strength (where up is constant), the

numerical results described below show that the wall shear stress varies approxi-
mately linearly. Hence, differentiation of equation (8) shows that, in order for the

velocity in the wall region to vary by order one on the $ length scale,

Of_T
O_ - O(1). (9)

According to the reasoning of §2.1, the key velocity and length scales in the wall

region are up and v/up. Hence the eddy viscosity might be expected to depend on

2 However,these parameters. Furthermore, it is reasonable that vT depends on u..

provided the functional dependence of the eddy viscosity on these parameters re-

mains analytic as u_. _ 0 (as it does for the mixing length and k - ¢ models), none
2 _ 0. If, however, theof these terms leads to a singular behavior in O_/T/O_ as u.

eddy viscosity is erroneously modeled in terms of u. (as in, for example, the Van

Driest damping function), then a singularity does occur. As described above, v/u.
becomes infinite at the zero skin friction point so that the use of u. as a velocity
scale is unphysical.

Equation (9) can be rewritten in terms of dimensional variables using the deft-
n 1/3

nition e = .tte L , the ordering e ,-_ _/L, and equation (4). The condition (9) then
requires that in the wall region

OVT Uoo_
O---_"_ "_' (10)

Whilst the experimental data is not entirely conclusive, it does suggest that, near

the wall, the eddy viscosity varies only slowly close to the point of zero skin friction
(Driver, 1991; Simpson et al. 1981). None of the data show a variation of the

magnitude needed to satisfy equation (10). We recognize, however, that the 'elliptic

effects', which must become significant at separation in the real flow, may cause the

eddy viscosity to adjust more smoothly than it would in a strict boundary layer

approximation.
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This argument suggests that, in the wall region, the advection terms remain small
at the point of zero skin friction. Similarly, they are expected to remain small in the

middle region. By contrast, in the outer region, the nonlinear terms are of leading
order. The boundary conditions at the lower limit of the outer region flow are

U _2/3Uo, U' u2, 1
,., _, eu-_e_,---_, V ,.. eV., as _l --* O, (11),

where the 'slip velocities', U, and Va, are determined by the wall and middle region

solutions. Melnik (1989) showed, by a similar argument as that leading to equation

(6), that a singularity can occur when U, = 0. The analysis leading to (11) indicates
no reason for U, and u2. to vanish simultaneously. The precise form of the variation

of Ua depends sensitively on the model used for the viscous sublayer. Experimental

data (Driver, 1991; Simpson et al. 1981) shows that, very close to the surface, the

mean shear at the zero-skin-friction point is large and that the mean velocity, just

above the viscous sublayer, is non-zero. Hence the experimental evidence strongly
• 2suggests that the slip velocity is non-zero as u, _ 0.

The conclusion is that, according to the asymptotic theory, a turbulent bound-

ary layer might pass through a point of zero skin friction without the boundary

layer approximation breaking down. This implies two possibilities: (i) the separa-
tion can remain confined to a small separation bubble without the boundary layer

approximation breaking down; or (ii), if large scale separation occurs, the mean
streamlines break away from the surface some small distance downstream of the

zero skin friction point.

_._._ Numerical solution

The full nonlinear boundary layer equations have been integrated numerically

using an algebraic eddy viscosity model developed from the asymptotic scaling in
order to check the deductions from the asymptotic analysis.

The eddy viscosity is given by

v_. = vc¢2(1-exp {-£2/v L (c_y + J.) }) (12)

When y/6 ,,_ 1, this becomes the Clauser viscosity voo = Cc(6/L)Uoo6., and when

yup/u ,,_ 1, UT "_ gV/_.-k ay, the mixing length formula. The mixing length, g, is

damped on the U/Up length scale near the surface:

= my (1 - exp(-yup/26v)). (13)

In order to have confidence that the numerical solution would capture any sin-

gularity, it was important to keep the errors associated with the numerical solution

procedure to a minimum. An error analysis, based on the assumption that a sin-

gularity did occur, was performed on numerical scheme; the streamwise step length
was then adjusted to keep this error fixed. The smallest step length was of the order

e2/10.
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FIGURE 2. Variation of skin friction with downstream distance for a boundary

layer in a constant adverse pressure gradient: (a) turbulent layer (at = 1, ReL = 106
so that e = 10-2); (b) laminar layer (a = 0.01, ReL = 103).
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The streamwise development of the skin friction in a boundary layer that is

subjected to a constant adverse pressure gradient is shown in figure (2a). For com-

parison, a corresponding laminar case is also shown in figure (2b). (Note the differ-
ent values of the pressure gradient between the turbulent and laminar cases--with

the same pressure gradient, the model does predict that a laminar layer separates
earlier than a turbulent layer!). In the turbulent case, rw -_ 0 linearly with no

indication of a _ behavior; by contrast the laminar flow shows clear evidence

of rw _ V_-/L. Other quantities were also monitored, but none showed a singular
behavior at rw = 0 for the turbulent boundary layer. The numerical results then

concur with the findings from the asymptotic study, namely that, in the turbulent

flow, the skin friction has no singularity when r_ _ 0.

_.3 Comparison with other o_ymptotic theories

Recently, there have been proposed two other theories for the asymptotic struc-

ture of a separating turbulent boundary layer. These analyses differ in fundamental

ways from the scaling developed by Durbin & Belcher (1991); therefore, an attempt

is briefly made here to reconcile these different viewpoints and to suggest the reasons
for the different results of these analyses.

Melnik (1989, 1991) developed an analysis based on a simple two layer eddy
viscosity model (see Cebeci & Smith, 1974), The outer part of the eddy viscosity
is of the constant, Clauser form. Melnik found asymptotic solutions in the double

limit of C _ 0 (where C is the multiplier in the Clanser eddy viscosity model) and

the Reynolds number Re _ _. The solution then develops a three layer structure.

The outer region, which extends over the outermost bulk of the boundary layer, is
equivalent to the outer region described in §2.1, when the parameter C of Melnik's

analysis is identified with _/L in the present scaling. In his middle layer, Melnik

suggests that solutions may be found as linear perturbations to the 'slip velocity',

Us (the velocity at the bottom of the outer region). If his middle region solutions
are put into dimensional form, it is found that this approach is valid only when

Us >> (_/L)½. Hence Melnik's analysis is appropriate only to the initial development
of a boundary layer in an adverse pressure gradient. The condition Uo ,-, (_/L)½ is

just that necessary for the Durbin & Belcher scaling to become valid. There is also

a significant difference between Melnik's treatment of the wall layer and the scaling
of §2.1. Melnik assumes that the logarithmic law of the wall holds very close to the

wall. Since the middle and wall regions are linear, the slip velocity is then linearly

related to the friction velocity (by a slightly modified form of the ZPG logarithmic

overlap). Melnik's analysis then implies that the slip velocity is zero at the same

point that the wall shear stress is zero. This is entirely a consequence of using
the ZPG drag law across the wall region. Hence Melnik's equation of the point

of singularity to the zero-skin-friction point is not necessarily valid; it seems to be
more of an assumption than a deduction. It has been shown in §2.2 that, if the

middle region is treated as in the Durbin & Belcher scaling, then the slip velocity
need not vanish at the point of zero skin friction. There is then no correspondence

between the singularity and the zero-skin-friction point.

Neish & Smith (1991) have also analyzed the effect of a pressure gradient on
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a turbulent boundary layer using asymptotic methods. Like Melnik (1989, 1991),

they also adopt the 'Cebeci-Smith' turbulence model. The main difference between
this analysis and the theories of Melnik and Durbin & Belcher is in the treatment

of the outer region. Neish & Smith treat the Clanser constant (C in the above
notation) as an order one constant. The outer region is then inviscid at leading

order. An analysis of the magnitude of the terms in the boundary layer equation

using the data of Driver (1991) shows that this is not an appropriate approximation:

the shear stress gradient is not negligible in the outer region. Furthermore, Neish gz

Smith assume a logarithmic overlap between the wall and outer regions, which leads
to the logarithmic friction law holding asymptotically close to the separation point.

This overlap law has no theoretical justification, and the experimental data shows

that the skin friction in an APG boundary layer falls more rapidly than predicted

by the logarithmic friction law (see data in Coles & Hirst, 1968). Hence we can
have little confidence in the development suggested by Neish _ Smith (1991).

3. Future plans

The asymptotic studies described in this report are being used to develop closure

models for separated turbulent boundary layers.
The investigation of the nature of the singularity in the boundary layer equations

near a point of zero skin friction suggests that it is important to model correctly the
Reynolds stresses in the wall layer. A model that addresses this issue but without

using 'damping functions' has been developed by Durbin (1991). This model uses

an eddy viscosity hypothesis, together with a transport equation for v 2 and the

standard k and _ equations. This model is currently being generalized to a full

Reynolds stress closure. In order to do gain theoretical insight into how this might

be done, the rapid distortion calculations of Hunt & Graham (1978) are being

extended to the case of initially axisymmetric turbulence, thereby showing how the

kinematic blocking effect is affected by anisotropy in the initial turbulence. The
Reynolds stress model will be used to compute separated turbulent flows.

The k-e- v z turbulence model of Durbin (1991) is also being used to investigate

the flow in a channel that is subjected to spanwise rotation. Below a critical value

of the rotation rate, the mean flow is two- dimensional, and I have shown that the

main features are captured by the k - e - v 2 model. Experimental measurements

(Johnston et al. 1972) show that when the rotation rate increases beyond a critical

value the mean flow becomes three-dimensional, with vortical rolls appearing in the
streamwise direction. The full Reynolds stress version of the model will be used to

study the bifurcation to the three dimensional flow.
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Single point modeling of initially isotropic
turbulence under uniform rotation

By N. N. Mansour, I C. Cambon _ AND C. G. Speziale 3

Direct numerical simulations (DNS) of initially isotropic turbulence in a rotating

frame were conducted, and comparisons were made with the predictions of gener-

alized Eddy-Damped Quasi-Normal Markovian (EDQNM) approximations. It was

found that for increasing rotation rates the non-linear triad interactions are reduced,

causing a reduction in the energy cascade and the turbulence decay rate. At small

Rossby numbers (Ro < 0.01), the transfer of energy is essentially shut-off. The ef-
fects of rotation on one-point statistics are reflected in a reduction of the production

of enstrophy on a time scale of O(1/_), while the destruction of enstrophy is af-

fected on a time scale of O(k/e). A one-point closure model that properly simulates
these effects is presented and comparisons are made with DNS results.

1. Motivations and objectives

The effects of rotation on turbulence are known to be subtle. The rotation rate, for

example, does not explicitly enter the equations for the turbulence kinetic energy

and its dissipation rate, yet experimental and numerical evidence show that the

decay rate of turbulence is reduced by the presence of uniform rotation (see Speziale,

Mansour & Rogallo, 1987). The objective of this work is to elucidate the effects of
uniform rotation on initially isotropic turbulence and to develop closure models for
these effects.

2. Accomplishments

The equations governing the evolution of the turbulence kinetic energy and its

dissipation rate for homogeneous turbulence in a rotating frame with no mean
strains are

k,, = -_ (1)

_,,= (2v_--_u,,_- 2v=_) (2)

where k= ½u--7_ is the turbulence kinetic energy, e is its dissipation rate, ui is the
fluctuating velocity, and wi the fluctuating vorticity. The first term on the right-

hand side of Eq. (2) represents turbulent stretching of vorticity and is a production

term. The second term is negative definite and represents the destruction of e. For

N C  i73 r)
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isotropic flow, the vortex stretching term can be written in terms of the velocity
3 /,,- 2 _.3/2derivative skewness, S = --U1,1/_Ul,1) as follows:

7 _2 ,----------

2v_iwiui J = _S T _/Re,
aVlo x

(3)

where Ret = k2/ve is the turbulence Reynolds number. From the above expression,

one can clearly see that the production term scales as Re_/2 for large Reynolds

numbers since one expects S and e2/k to remain bounded. An expression for the

destruction term was derived by Smith & Reynolds i1991) using a model spectrum.

They show that for a spectrum of the form E(_) o¢ e2/3_ -s/3 the destruction term

scales with Reynolds number as

2v2_i,io.,,j ¢x x/'-_t_. (4)

_.1 A closure for the e.equation

The results of Smith & Reynolds (1991) are in agreement with Tennekes & Lumley

i1972), who argued based on an order of magnitude analysis that, at high Reynolds

numbers, the vortex stretching term and the destruction term balance each other

to O(Re_/2), leaving a net Oil ) term independent of the Reynolds number. For

isotropic flows, the net Oil ) term is function of e, k, and v. In this case, the

destruction term is written as follows,

7 E2 _ e2

2tfl wijwij - 3_GT'v/Ret + C2(Re, )---_ (5)

where C2(Ret) remains bounded and is independent of the Reynolds number as
Ret --4 ¢x_, and G is the coefficient of the leading term in an expansion of the

destruction term in Ret. We then model the equation for e as follows:

= (s- - c T. (6)

For isotropic flows, the above expression is exact since we did not specify the form

of C2(Ret). In an equilibrium isotropic turbulence, S = G yielding the classical

modeled dissipation rate equation.

For unstrained homogeneous flows, the above arguments will lead us to define S
to be

k 1
S =--. 7 vwiwjuij e2 _ (7)

and G to be

3_i5 e2 k 1G - (2v 2 wi,jwi,i - C2iRet)T)- _ _. (8)
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FIGURE i. Energy Spectrum of the initial conditions. -- Ret = 556, Comte-

Bellot & Corrsin (1966); .... Ret = 63, Veeravalli (1991); ........ Ret = 36.5,

Veeravalli (1991); (a) -'x--)e- Ret = 27.24, DNS; (b) _ Ret = 67.1, DNS.

Note that the above definitions will have to be modified for homogeneous flows

where the mean velocity gradient explicitly appears in the equations for k and e.

_._ The initial flowfields

Recently Wray & Rogallo (1991) ported VECTORAL and a spectral code for

isotropic flows to the Intel iPSC/860 128 processors machine. We modified the
code for the case of homogeneous flows under uniform rotation. The code was

then used to generate fully developed isotropic flowfields (setting the rotation rate

f_ = 0) to be used as initial conditions for the rotation cases. It was found (see

Mansour & Wray, 1991) that long time integrations are needed to establish isotropic

flowfields undergoing a power law decay. Two isotropic flowfields were used as
initial conditions: The first at Ret = 27.24 using 1283 Fourier modes; the second at

Ret = 67.1 using 2563 Fourier modes. The reason for the low Reynolds number of

the initial fields is that we sought a fully developed flowfield (undergoing a power

law decay) where the peak of the spectrum is in a shell with enough samples. Figure

1 shows the predicted spectra compared with the experimental results of Comte-

Bellot & Corrsin (1966) and Veeravalli (1991). We find good agreement between
the computed spectrum and the experimental measurements. It is noteworthy that

scaled on "Kolmogorov" variables ((v3/6)1/4 for the length scale and (v/6) ]/4 for

the velocity scale), the spectra do not collapse in the dissipation (i.e, the high wave



162 If. N. Mansour, C. Cambon _ C. G. Speziale

0.6"

0.4-

0.2" 0._

•o.........."_";'""i....................x...._..._..............
I !1 I

V : I
; U

e

T i Iiu

° ,,i i
v :"

000 0 i

...................o._.................._._....... .............
i °°Oo_ v
i : o

÷ i: i
• ii!i *"*÷.:'÷÷.,..,. ..,-

e

1 2 3

Ca) (t -- to)eo/ko

0.6

A .:
i

014_ .................... 11 t " IAI I I I_I I I _ I I I _11.I i ...................

÷÷ ÷_
4,

41"

....................... o ...................... .. .......................

13

rl
:El

0
I:1

v v
V V

0.0 O.Co o.o
(b) (t-to) o/ko
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number) range at these Reynolds numbers. Numerical simulations show that at

high Reynolds numbers the spectra collapse at the high wave numbers when scaled

with Kolmogorov variables, but they start to deviate from the collapsed curves when
Ret < 120.

i_.3 Skewness as a function of the Rossby number

Numerical simulations at various Rossby numbers (Ro = e/12k) were carried out

starting with the two flowfields (Ret = 27.24 and Ret = 67.1) described in the

previous section. Figure 2 shows the development of the skewness, S, with time for

various Rossby numbers. We find that S is suppressed by the effects of rotation. The
time scale at which this suppression occurs is commensurate with the rotation rate

time scale 1/fL Plotted as a function of the inverse Rossby number (see Fig. 3), we

find that, starting with a fully developed isotropic flowfield (S _ 0.49), the effects

of rotation are to suppress the nonlinear interactions on a time scale of O(1/f_),
and an equilibrium skewness (Se) is reached which is a function of the Rossby and
Reynolds numbers.

In addition to the DNS runs, we have carried out simulations using a modified

version of the Eddy-Damped Quasi-Normal Markovian model of Cambon & Jaequin
(1989). We find good agreement between the model and the DNS data when the
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EDQNM simulation is initialized with the same spectrum as the DNS. The collapse

of the curves to an equilibrium skewness was not obtained when an analytical spec-

trum was used to initialize the EDQNM simulations. This is an indication that the

use of a well established initial flowfield (undergoing a power-law decay) is impor-

tant to achieve the collapse observed in Fig. 3. The form of the stretching term in

the dissipation rate equation suggests that S_ = S_(Re_/2 Ro). The exact functional

form is not known, but the success of the EDQNM model suggests the following

model:
0.49

Se = x/1 + 2/(RetRo2)" (9)

Thus for a fixed Reynolds number, S¢ _ 0 as Ro ---* O, but it takes an infinite

rotation rate to suppress the skewness at infinite Reynolds number.

_._ A model for the effects of rotation on the skewnes_

The previous observations suggest that the effects of uniform rotation on the

skewness can be modeled simply by

S,, = &).
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The above form reflects the fact that the skewness will reach the equilibrium skew-

ness on a time scale of O(1/f_). The value of _ will have to be determined empiri-

cally.

_.5 G as a function of the Rossby number

From its definition, G is that part of the destruction of dissipation term that

balances the vortex stretching term as Ret _ w. The evolution of G as a function
of time for various Rossby numbers is shown in Fig. 4. We find that G is also sup-

pressed by the rotation but on a time scale of O(k/e). In the absence of production,

the gradient of the vorticity diffuses on the turbulence time scale.

_.6 A model for the effects of rotation on G

The term G in the dissipation rate equation is reacting to the fact that the vortex

stretching term has been suppressed by the rotation. This can be modeled by

G,, ---/3-;(G- S). (11)

Thus G will equilibrate with S on the turbulence time scale, k/e.
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FIGURE 5. The effects of rotation on k. (a) Ret = 27.24, _ DNS Ro = c_,

o DNS Ro = .37, " DNS Ro = .037, .... Model Ro = co, -_-- Model Ro = .37,

-_-- Model Ro = .037. (b) Ret = 67.1, _ DNS Ro = oo, o DNS Ro = .24,

-. DNS Ro = .1, .... Model Ro = oo, -,_-- Model Ro = .24, -._-- Model Ro = .1.

_.7 Model testing

To summarize, we have a four-equation model for the effects of rotation on initially

isotropic turbulence:

k,t = --e

e,, -- 3X/15(S-

S,,= -(_f_(S- &)

G,,= - s)

where Se is given by Eq. (9) with a = 2 and fl = 2.5. The functional form

for C2 is a fit to the data for isotropic decay proposed by Coleman &: Mansour

(1991), C2(Ret) = 1.8- .4exp(-.13_/2ORet/3). The above set was solved numer-

ically using a fourth-order Runge-Kutta integration for both the low and the high

Reynolds number cases considered in this study. We find (see Figs. 5 and 6) that

the model predicts well the evolution of the turbulence kinetic energy and its decay
rate for both the case of zero-rotation and rapid-rotation. The prediction for the

intermediate-rotation cases is marginal and can probably be improved by modifying

a and ft.
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FIGURE 6. The effects of rotation on e.

o DNS Ro = .37, " DNS Ro = .037, ....

-,_-- Model Ro = .037. (b)Ret = 67.1,

L,DNS Ro = .I,....

(a) Re, = 27.24, -- DNS Ro = co,

Model Ro = co, -_-- Model Ro = .37,
DNS Ro = oo, o DNS Ro = .24,

Model Ro = co, -.v-- Model Ro = .24, --_--- Model Ro = .1.

3. Future work

The model developed under this effort reflects the fact that uniform rotation will

reduce the decay rate of turbulence. In this case, the turbulence decays but at a

slower rate than isotropic decay in an inertial frame. The next challenge is to model

elliptic flows (uniform rotation + oscillating-strain or plane-shear) where the flow
can be linearly unstable to three-dimensional perturbations.
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Derivation of the _:- E model equations
using the renormalization group method

By L. M, Smlth I

1. Motivation and objectives

We have made a critical study of the renormalization group (RNG) theory of

turbulence proposed by Yakhot and Orszag (YO, 1986). The results of that study

were reported in CTR Annual Reseaech Briefs . 1990 and in full detail elsewhere

(Smith and Reynolds (SR), 1991). Our independent study led to confirmation of

YO's basic theory of the Navier-Stokes equations, but errors were found in their

derivations of the velocity-derivative skewness and the model transport equation for

the mean dissipation rate of energy £. The most consequential changes over what

was reported by YO were in the £ model equation. As will be explained, our efforts

have led to a reformulation by Yakhot and Smith (YS, 1991) of the RNG method

for derivation of model transport equations.

2. Review of the basic theory

The RNG model is isotropic turbulence in an unbounded domain, driven by a

Gaussian random force f,

o%1
O---t 2V VjVjVi = fi -- Vip _- VoV2Vi (1)

where the velocity v is divergence-free (Vj -- O/Ozj), v,, is the molecular viscosity,

and the constant density p has been absorbed into the pressure p. The force f must

satisfy incompressibility, homogeneity in space and time, and isotropy in space. It

is designed to produce a scale-invariant field with energy spectrum given by power-

law decay in wavenumber space. If f is further assumed to be white-noise in time,

the most general form of its two-point correlation function in time is (Leslie, 1973)

< L([)/_(_')>:2Do(2_)_+lk-'P,_[k]_[i+i'], An_<k<Ao (2)

where 1_ = (k,w) is the wavevector-frequency vector and the dimension d = 3.

Herein square brackets [...] are used to denote the arguments of a function or

variable. The delta function guarantees homogeneity and the projection operator

Pit[k] : 6ij - kikj/k 2 guarantees isotropy and incompressibility. The wavenumber

Ao is an ultraviolet cutoff above which the viscosity is the molecular viscosity vo,

and An --* 0 is the low-wavenumber end of the scaling regime. The exponent y = 3

1 Current address: Program in Applied and Computational Mathematics, Princeton University,

Princeton, NJ 08544
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leads to a Kolmogorov inertial-range energy spectrum E(k) =oc k -s/a (YO). The

amplitude Do has units of k_-a-2wa. One sees that for y = 3, Do has the dimen-

sions of the mean dissipation rate of energy £, and thus in this case, the parameters

of (2) are k and £. Dannevik, Yakhot and Orszag (1987) found the relation between

Do and C when y = 3 by requiring overall energy conservation of the renormalized

Navier-Stokes equation after removal of eli scales above k in the inertial range (see

(4) and (6) with A -- k),

DoSa
- 1.59E (3)

where Sd isthe area of a unit sphere in d-dlmensions.

The RNG procedure to eliminate small scalesfrom the equations of motion (1)

has been described in many papers in the literature,for example, Forster, Nelson,

and Stephen (1977), De Dorninicis and Martin (1979), Fournler and Frisch (1983)

and YO (1986), and will not be repeated here for brevity. SR also provides a

detailed discussion of the scaleremoval procedure and the approximations involved.

The removal procedure iscarried out in wavenumber space and uses a perturbation

seriesfor the velocity modes in a thin shellof high wavenumbers in powers of the

local Reynolds number. Substitution ofthe perturbation solution for the velocity at

high wavenumbers, into the equation for the velocityat low wavenumbers, leads to

a modified equation for the velocityat low wavenumbers. Among the modifications

isa correction to the viscosity.The corrections accumulate as more thin shellsare

removed.

After iterativeremoval of many thin wavenumber shells,the local Reynolds num-

ber, based on the modified viscosity,was shown (YO) to be proportional to eI/2

where e = 4 + y - d. Thus for e ---,0, the solution for the high-wavenumber modes

isgiven by the lowest-order term in the seriesexpansion, and in this case, the only

modifications to the equations for the low wavenumbcrs and low frequencies (in the

limit k ---* AI: _ 0 and _ ---* 0) are the modified viscosity and an induced force F.

Taking inverse transforms, the equations for the long times and large scales are

Ovi
CO----tq- vjVjvi = fi "4-Fi - Vip + vT[A]V2vi (4)

where ur[A] is the effective viscosity acting at large scales after removal of wavenum-

bers A < k < Ao. To lowest order in an expansion in powers of e,

(3 (2D°s ,_,,.
ur[A] = \ ) (5)

The induced force F is Gaussian at lowest order in e (Forster et aL, 1977) and

given by its two-point correlation function

< Fi[icl]Vj[l¢ '] >= 2DoD'(2r)d+'k2pii[k]$[k + i¢'] (6)

where the amplitude D' is also found at lowest order in e. The "backscatter" force

F, with correlation function proportional to k 2, is negligible compared to the bare
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force fin AL < k < Ao. However, it is important in0 < k < AL and leads to

an induced energy spectrum E[k] oc k2 in 0 < k < AL (Forster et al., 1977). The

induced energy spectrum is important for the RNG derivation of the £ transport

equation (section 3.4).

The Yakhot-Orszag theory of turbulence is the evaluation of the results (4)-(6)

at lowest order in an expansion in powers of e with e = 4, which gives Kolmogorov

scaling. Using relation (3), the effective viscosity becomes

vT[A] = 0.49£1/3A -4/3.

3. Accomplishments

We shall now describe the evolution of the RNG derivation of the model £ equa-

tion. The exact transport equation and "standard" model transport equation are

first reviewed to remind the reader of what might be expected from the RNG anal-

ysis.

$.1 The ezact transport equation for £

We consider the velocity field ui of incompressible flow with constant viscosity

Uo. The total velocity ui may be written ui = Ui + vi, where Ui --< ui > and vi is

the zero-averaged fluctuations from the mean.

The dissipation rate of the kinetic energy of the fluctuations in homogeneous

turbulence is g - Vo < (_'jvi) 2 >. The Navier-Stokes equations may be used to

derive an equation for the time rate of change of _ in homogeneous flow,

T, T,
*% _ r tl *% ,,

oc < <
&

T. TI
ill *%

Intuitive scaling analysis (Tennekes and Lurrdey, 1972) shows that the dominant

balance is between TI and T_ and that these terms scale as O[RIT/2], where the

turbulence Reynolds number RT = IC2/(Uo£).

3._ The %tandard" model equation for E

The time rate of change of £ is usually modeled by the sum of O[1] terms, which

assumes the exact cancelation at leading order of T1 and T2. There has been no
solid theoretical justification for this exact cancelation, and the only "proof" has

been model performance. The most widely used model is

0£ £ £2
o-7- - ce2 - (9)

where PIc - -VjUi < vivj > is the production of ?C. The Reynolds stress is usually
modeled by
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2/C_i./
< vivj >= 3 2t,_Sij (1Oh)

S_ = _(VCU_ + V_U_) (lOb)

where v_ is an eddy viscosity and Sij is the rate of strain tensor. The model

coefficients Czl and C_2 are dimensionless. These coefficients are independent of

R2" at high RT, and typical values are C_1 = 1.4 and Cz2 = 1.9 (Patel, Rodi and
Scheurer, 1985).

$.3 The £ model equation found using the original YO method

The starting point for the RNG derivation of the model £ equation is the transport

equation for the instantaneous quantity _ = Uo(Vjvi) _. Taking the time derivative

of ¢ followed by substitution of the (unforced) Navier Stokes equations leads to

T2i

-_ = -v¢'qj¢ + XoV¢V¢_ - 2Vo(VjV,,,vd 2

Tt_
¢%

- 2vo[V jvil(V j V iP) + "_- 2vo(V jvi )( V jVm )(V,,_ vi )Y ( 11)

where Xo = Vo. The terms labeled Tli and T2i are the instantaneous forms of 7'1
and T2 in equation (8).

Following the RNG scale elimination procedure, the small scales are systemati-
cally removed from the equation for _ = llm£_.. 0 ¢(!_) (see SR), where ¢(k) is the

four-dimensional Fourier transform of ¢, and the limit Ic ---*0 means k ---*AL --* 0
and w ---*0.

In the original YO derivation of the g equation, the O[R_T/2] contributions from
T1 and T2 were assumed to cancel. The O[1] contributions from T1 and T2 were

calculated in 0 < k < AL after removal of AL < k < Ao.

We showed (SR) that the final form of YO's model E-equation is in error and we
provided the "correct" model found ]allowing YO's original procedure. In the limit

of high Reynolds numbers, a consistent application of that procedure leads to the
model

0£ ¢2

-UiVi£ + VjXTVj£ 5.65_- + If" (12)Ot

where XT = atPT, a = 0.77 and t'T = 0.085K:2/£, and these values are exactly

as given by YO. The decay rate for isotropic flow 5.65 is in poor agreement with
observations and K: - _: models in current use. YO had previously reported the
decay rate 1.7, which agrees well with observations and current models.

The term l'I* (initially thought responsible for the production of £ in anisotropic
flow) is O[VSv 3] and cannot have the form Vv 3 as reported by YO. Thus the model

(12) does not have the form of the production term P_:E/K: used in current models.
YO have now confirmed our results.
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$.4 Reformulation of the procedure to derive model transport equations

Applying the RNG scale removal procedure to (11), we found cancelations be-

tween terms describing the effect of the small scales on the large scales. For example,

terms from T1 of the form (Vv) s exactly cancel. Reviewing the SR work, V. Yakhot

noticed that these cancelations were among O[R_/_] terms but that some O[R_/_]

contributions remained when the RNG scale removal procedure was applied to (11).

Subsequently, YS considered the transport equation for _ derived by taking the time

derivative and substituting the 1omed Navier-Stokes equations.

Since the force f is assumed to be the result in An < k < Ao of all turbulence

production mechanisms, using the forced Navier Stokes equations is the only proce-

dure consistent with the basic theory reviewed in Section 2. They also introduced

a mean flow, and thus they started with the equation

0¢ _ 2vo(Vjvi)(Vjfi)-vjVjcfi + XoVjVj¢ - 2vo(VjV,nvi) _
&

-2,,o(Vj,,,)(v iv,p) + "{-2,.o(Vj,,,)(v )(v,.,,,)
Tsl T4_

+'{-2voVjU,_(Vjvi)CVmvi)i+'{-2voV,,,uicvjvi)(Vjv,n)i (13)

where f is given by (2). Notice the inclusion of the instantaneous terms Tsi and T41

as well as the random-force contribution to g-production PI.

The RNG scale removal procedure may be applied to remove wavenumbers AL <

k < Ao from (13), thereby deriving the equation for g = limf,_.0 ¢(i_). One finds

that all O[RT/2] terms cancel at low orders in the e-expansion. Thus RNG provides

theoretical support for expressing the equation for g in terms of O[1] inertial-range

parameters. At low order in the e-expansion the equation for g has a similar form

to the equation for _b but with modified transport coefficients,

T2
og " -
0--_ =-VjVjg + XT[AL]VjVjg--'2vT[AL] < (VjVmvi<) 2 >

7"3

+ {-2vT[An]VjUm < (VjVi<)(VmV <) >}

T,
j#.,,

+'{--2vT[ALlVn_Ui < (Vjv<)(Vjv <) >i (14)

where vT[AL] is given by (7) and XT[AL] : arT[ALl with a = 0.77 as before.

The fluctuations v < are the fluctuations in 0 < z < _r/AL and for I _ oo.

The terms T2, T3 and T4 in (14) must be closed in terms of g, K:, and U, and to

do this, YS first rewrite (14) in terms of the energy spectrum tensor Eij[k] of the

wavenumbers below An,
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0£

&
-- UjVj_, q- XT[AL]VjVj_,

T2
*%

- 4vT[AL]/0 Az k'E(k)dk

Ts
d%

r

]o+ {--2vT[AL]VjUm kikjE[k]dk}

*%r

+ {-2vT[AL]VmUi k2Eij[k]dk.}. (15)

YS use the form of the RNG induced spectrum Eij [k] o¢ k 2. YS assume that the

value of £ is determined by the large scales and that the expression for £ is invariant

in the inertial range up to k = AL,

/0 °°
£ ---- 2vo k2E[k]dk

/0 A /0 AL= 2uT[A] k2E[k]dk = 2vT[AL] k2E[k]dk. (16)

They also assume that the production of kinetic energy P = -VjUi < viv i > is

determined by the large scales,

j_0ALP = - Vj Ui Eij [k]dk. (17)

The last equality in (16) allows YS to close T2 in terms of £, and (17) allows YS to

close 7"4 in terms of P. Using Eli[k] oc k 2 as suggested by the RNG analysis of the

Navier Stokes equations, they find

o£
Ot -- UjVj_. q- XT[AL]VjVj_.

Ts

/o-1.68_ ---2 + 1.44P_- + {--2vT[AL]VjUm kikjE[k]dk} (18)

where T3 remains unclosed. We note that only the form of Eij is used to derive

(18), and not its amplitude. Furthermore, isotropy of the large scales, imposed by

Pij in (6), has been relaxed. Note also that K: which appears in (18) is the kinetic

energy under the inertial range and not the full kinetic energy.
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It is not apparent how to close the term arising from T3, which we shall denote R,

within the framework of RNG. However, analysis shows that R is small in weakly

strained turbulence and large in the rapid distortion limit r/--, oo, where r/__ S_./£

and S : (SijSij) 1/2 is the rm_ mean rate of strain. The nondimensional parameter

T/is the ratio of the turbulence time scale _/£ and the time scale of the mean 1/S.

Yakhot, Orszag, Thangam, Gatski, and Speziaie (1991) have proposed a closure

for R, which is an approximation to its infinite series in powers of _/. The ap-

proximation is a partial sum to all orders in _7rather than a finite truncation and is

constructed to satisfy certain consistency conditions. For example, the approximate

expression for R approaches zero faster than T4 : 1.44PK_/£ in the limit of weak

strain 17_ 0.

4. Future plans

The new aspects of the YS procedure are as follows:

1. the transport equation for any instantaneous turbulence quantity (the mean of

which is the desired result of RNG) must be derived using the/o_ed Navier Stokes

equations;

2. the dynamical terms coupling the mean velocity to the fluctuations must be
retained.

The first rule insures that production at the 8mall scales is properly accounted for,

and the second rule insures that production at the large scale_ is properly accounted
for.

The YS method can be used to derive turbulence models at any level of com-

plexity, for example, a full Reynolds stress model. The RNG model for the fast

pressure strain term in the transport equation for the Reynolds stress is currently

being explored.

All the terms in the Launder, Reece, and Rodi (1975) model for the fast pressure

strain are predicted, as well as some new terms, analogous to the case of the C-

transport equation. It is expected that some of these new terms should be closed

by approximation to all orders of their power series in _7, following the method of

Yakhot et al., (1991).

RNG may also be used to derive models which include important, more compli-

cated physics such as rotation and compressibility. Flows which include such effects

are described by several dimensionless parameters and are not easy to model us-

ing heuristic methods. RNG provides a systematic procedure to derive models for

complex flow systems. The testing of such models may help to improve the theory
itself.
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On dynamic models for large eddy simulation

By T. S. Lund

1. Motivation and objectives

I.I Background

The restriction to low Reynolds numbers is a well known limitation of the direct

numerical simulation technique. It is easy to show ( e.g. Leonard 1973 ) that the

number of grid points required to resolve all the scales of motion increases with

the 9/4 power of the Reynolds number. It is clear that direct simulation of high
Reynolds flows number found in engineering applications will continue to exceed

computer hardware limitations for the foreseeable future.
Fortunately, the inability to simulate all the scales of motion that appear at high

Reynolds number can be circumvented by solving a suitably averaged form of the

Navier-Stokes equations. The large eddy simulation technique proceeds in this direc-

tion by averaging the equations locally over small regions of space. This operation

results in a separation of scales into a resolved (large eddy) field and an unresolved

(subgrid-scale) field. Much like the familiar Reynolds averaged technique, the large

eddy approach leads to a set of governing equations for the resolved field, with the
effect of the unresolved scales appearing as an unknown transport term. Unlike the

Reynolds averaged technique, this unknown transport term accounts only for the

smallest scales of motion. It is generally believed that the smallest scales exhibit a

higher degree of isotropy and are more universal in structure that the largest scales
of motion. This feature should make the effect of subgrid scales easier to model as

opposed to the full range of motions required by the Reynolds averaged approach.
Large eddy simulation in connection with very simple subgrid-scale models has

enjoyed a considerable degree of success in modeling high Reynolds number tur-
bulent flows. By far the most popular subgrid-scale model is that of Smagorinsky

(1963). This model (as well as a host of variants) is based on a gradient transport
hypothesis that leads to an algebraic eddy viscosity formulation. A single model

constant is employed, and estimates for its value have been proposed analytically

by Lilly (1966), by matching with experimental data (e.g. Deardorff 1971, Kwak

et al. 1975), and by matching with direct simulation data (e.g. Clark et al. 1979).

These various estimates are reasonably consistent for the same type of flow, but
considerable variation is evident in dissimilar flows. Bardina et al. (1983) showed

that the model constant is very sensitive to the level of mean strain rate. The

Smagorinsky model apparently does not live up to the ideal of universality; the
model constant must be tuned for each type of flow. This drawback limits the util-

ity of large eddy simulation since calibration of the model is a difficult procedure

that can be done only if experimental or numerical data exists for the type of flow
under consideration.
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1._ Dynamic model of Germano et al.

Recently Germano et al. 1991 developed a procedure that overcomes the need

to calibrate the Smagorinsky model. In this procedure, information contained in
the resolved field is used to determine the value of the Smagorinsky coefficient.

This is done, in principal, for each point in the flow at every time step. Aside

from removing the tunable constant from the Smagorinsky model, the dynamic
procedure has several other advantages: (1) correct behavior is obtained near solid

boundaries without the use of ad hoc wall damping functions; (2) the subgrid-scale
stresses vanish in laminar flow, making transitional calculations possible; and (3)

energy transfer from subgrid scales to large scales is possible (i. e. backscatter). The

dynamic model has been successful in simulating transitional and fully developed

channel flow (Germano et al. 1991), as well as decaying compressible homogeneous,

isotropic turbulence (Moin et al. 1991).
Although the dynamic model has demonstrated its advantage over the pure

Smagorinsky model, there is one unsettling detail that limits its utility. It turns
out that the dynamic procedure yields a model coefficient that has a tremendous

variation from point to point in the flow; the rms variation is at least an order of

magnitude larger than the spatially averaged mean. Negative values of the model

coefficient are just as likely as positive ones, indicating widespread transfer of energy

from the subgrid scales to the resolved motions. Isolated occurrences of negative
coefficients two to three orders of magnitude greater than the mean have been ob-

served. Large negative coefficients lead to solutions that diverge exponentially, and
current numerical methods are not able to handle this behavior. This issue has been

circumvented in the aforementioned simulations by averaging the model coefficient

over homogeneous directions in the flow. This operation leads to a model coeffi-

cient that is almost always positive and of the same order of magnitude as the fixed
constants used with the pure Smagorinsky model. As a drawback, the averaging

procedure removes the ability of the model to adjust the subgrid-scale stresses to

reflect the local behavior of the flow. Furthermore, it is not clear what to do in the

case of a flow void of at least one homogeneous direction. Most importantly, the

averaging process obscures the issue of whether large negative values of the model

coefficient are physically realistic or just an artifact of some inconsistency in the
dynamic procedure.

1.3 Objectives

The main objective of this work is to improve the dynamic model of Germano et

al. so that the local values of the model constant can be used. This objective will

be carried out in the following steps:
1. Use direct numerical simulation data to determine to what extent large negative

values of the model coefficient are realistic.

2. Determine which elements of the dynamic procedure lead to non-physical model
coefficients.

3. Modify the existing model to correct for any exposed defects.

4. Test the modified model against direct numerical simulation data to confirm that

the non-physical behavior has been eliminated.
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5. Test the modified model in large eddy simulations to evaluate it for accuracy and

numerical stability when the local value of the model coefficients are used.

2. Accomplishments

Direct numerical simulation data of turbulent channel flow has been used to

isolate problem areas of the dynamic model and to evaluate improvements to the
model. The simulation data is that of Kim et al. (1987) at Reynolds number

of 3300 based on centerline velocity and channel half-width. The grid used in

their study contained 128 x 129 x 128 points in the streamwise, normal, and

spanwise directions respectively. A synthetic large eddy solution was obtained by
interpolating the direct simulation velocity field onto a 64 x 129 x 64 grid using a

sharp cutoff filter in Fourier space. The companion subgrid-scale velocity field was
formed by subtracting the large eddy field from the direct simulation field. With the

subgrid-scale field known, the subgrid-scale stresses could be computed exactly and
the results compared with models that operated only on the large eddy component

of the velocity field.
Model accuracy was evaluated in terms of the associated dissipation rate. There

are two compelling advantages to analyzing the results in this way: (1) dissipation
rate is a scalar quantity and thus is easier to interpret than the six components of

the subgrid-scale stress tensor; and (2) the most important role of the subgrid-scale
model is to dissipate the correct amount of energy from the resolved field. The

subgrid-scale dissipation rate is defined as

= TIn.S=.. (1)

Comparisons between exact and modeled dissipation rate were made in terms of

scatter plots and in terms of the correlation coefficient, defined as

< Ee6m >

(2)

where e e and em are the exact and model values of the dissipation rate, and <>

denotes an average over a plane horizontal to the channel walls. Plane-averaged

dissipation rates (< em >) were also compared with the corresponding exact values.

_.i Evaluation of the dynamic model of Germano et al.

Dissipation rates predicted by the dynamic model of Germano et al. are compared

with exact values in Figures 1-3.
For reference, predictions of a pure Smagorinsky model ( identical to that used

by Moin and Kim (1982) with (S O- < Sij >) replaced by S 0 and v_ = 0 )

accompany the results of the Germano model. Figure 1 is in the form of a scatter

plot where the exact dissipation rate is plotted as function of the modeled dissipation
rate. A perfect model would yield a plot where all the points lie on a 45 ° degree

line passing through the origin. Data are displayed for a single horizontal plane,
chosen to be the one where the exact dissipation rate is maximized. Figure la
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FIGURE 1. Scatter plots of exact versus modeled dissipation rates for (a) the

dynamic model of Germano et al. and (b) the Smagorinsky model. Note the
difference in scale between plots (a) and (b).
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indicates that the dissipation rate predicted by the dynamic model correlates poorly
with the exact values. The most striking feature of this plot is that the data lie

in a narrow horizontal band, indicating that the model substantially overpredicts

the magnitude of the dissipation rate for most points in the flow. The evident

symmetry with respect to both the model and exact axes implies that positive

dissipation (backscatter) is just as likely as negative dissipation for both the exact
and model values. Data for the Smagorinsky model displayed in Figure lb are

remarkably different. The data are aligned in a vertical pattern, indicating that the

Smagorinsky model usually underpredicts the magnitude of the dissipation rate.
Asymmetry with respect to the model axis is evident, as the Smagorinsky model

is constrained to yield only negative dissipation rate. In comparing Figures la

and lb, note that the scale in Figure la is 5 times larger than that in Figure lb.

This fact, coupled with the different distribution shapes, implies that the dynamic

model predicts a span of dissipation rates that is roughly 30 times greater than the

Smagorinsky model. More importantly, about half of the dynamic model dissipation

rates are positive, indicating energy transfer from the subgrid scales to the large
scales. The overprediction of these positive dissipation rates is likely to lead to

numerical instability when the dynamic model is installed in a simulation code.
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FIGURE 2. Plane averaged correlation coefficient between exact and modeled

dissipation rate.

Figure 2 shows the correlation coefficient between the modeled and exact dissi-

pation rate for both the dynamic and Smagorinsky models. The correlations are

formed in planes parallel to the channel walls, and the resulting values are plotted
as a function of the normal coordinate, with -1 corresponding to the lower channel

wall and 0 corresponding to the channel centerline. The correlation is poor for both

models except in the near-wall region (where both the modeled and exact subgrid-

scale dissipation rate vanish with decreasing distance to the wall). The dynamic
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model yields roughly a 10% correlation over most of the channel, which is about half

the roughly 20% produced by the Smagorinsky model. The correlation coefficient

for the dynamic model is seen to be negative at a few locations, which indicates

that the model predicts dissipation of the wrong sign for a significant number of
points within these planes.
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FIGURE 3. Plane averaged dissipation rate.

Dissipation rates averaged over planes parallel to the channel walls are displayed
in Figure 3. It is evident that both the dynamic and Smagorinsky models are in fair

agreement with the exact values. The dynamic model is much noisier, probably as
a result of the wider range of values within each plane. In view of the results shown

in the scatter plots of Figure 1, it is remarkable that both models yield reasonable
average values of dissipation rate. In the case of the dynamic model, the abundance

of both large positive and negative values evidently cancel, leaving a small negative

residual. In the case of the Smagorinsky model, the distribution is very tightly
packed about a small negative value. Since the model constant was properly tuned
by Moin and Kim, the distribution is also centered about the correct value. Notice

when comparing Figures 1 and 3 that the average value of dissipation rate is of

order 1, while the range of exact values is of order 100, and the range predicted by
the dynamic model is of order 1000.

t3._ Comments on the dynamic model of Germano et al.

It has been shown that the dynamic model locally overpredicts magnitude of the
dissipation rate and is very weakly correlated with the exact values. At the same

time, however, the model predicts the average dissipation rate with acceptable ac-

curacy. These results are consistent with the calculations of Germano et aL (1991)

and Moin et al (1991) where accurate results were obtained using averaged values of
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the model and where numerical instabilities prevented performing calculations us-

ing local values of the model coefficient. It is hypothesized here that the numerical
difffculties experienced in the aforementioned investigations was due to both local

areas of non-physically large values of positive dissipation and prediction of positive

dissipation rate when it should be negative. Positive dissipation rates leaxl to ex-

ponential growth in the velocity field, and the solution will increase without bound
until the dissipation rate reverses sign. The propensity of the Germano model to

overpredict the values of positive dissipation rate, coupled with its tendency to pre-

dict erroneous positive dissipation rates, makes it seem likely that rapidly growing
solutions could be incorrectly amplified rather than damped. If this scenario is

correct, then it is the noisy nature of the dynamic model that is responsible for the
numerical difficulties. The model is scrutinized for the source of its noise in the

following subsection

_.,$.1 S_ress-strain alignraent and local isotropy

The dynamic model is constructed from the following chain of equalities

^ ^ ,t A ^

% J

computable Germano's identity

- -c£ = -ISlS i ,

M; i (computable)

(3)

where (-) denotes variables obtained directly from the large eddy Simulation, (')

denotes a "test" filtering operation that removes the smallest scales resolved by

the large eddy simulation, and * denotes the trace-free part of the corresponding
tensor. C is the square of the usual Smagorinsky coefficient, Sij is the strain rate,

A is a measure of the grid spacing, and T and r are the subgrid-scale stresses

associated with the test-filtered and large eddy fields, respectively. Notice that the

Smagorinsky model has been assumed for both stress fields, with the same value of

the scaling coefficient (which, when defined locally, has been inconsistently extracted
from the test filtering operation in the last term).

Equation (3) may be written more compactly as

Li_ = -Ch2Mij. (4)

Since both L* and M are computable, the above relation can, in principal, be solved

to yield the value of C. Notice, however, that the above equation is a tensor relation
that is equivalent to nine scalar equations ( only six of which are independent due to

symmetry). Two possibilities thus exist: either (1) L* and M are the same tensor,

differing only by a scaling factor, or (2) the system is overdetermined algebraically

and no value of C will make Eq. (4) an equality. The former requirement is met
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if the Smagorinsky models used at both the large eddy and test-filtered levels are

exactly correct. In this case, the subgrid-scale stress and the corresponding strain
rate tensors are related by a scalar factor and therefore share the same principal

directions (perfect alignment). Alignment of the subgrid-scale stresses and the strain

rate implies that the subgrid-scale stresses are transporting momentum isotropically
at each point within the flow field. Isotropy, however, is a statistical notion that is

not expected to hold locally. Indeed, the scatter plot of Figure l(b) confirms this
conjecture by illustrating the poor correlation between the Smagorinsky model and
the exact values on a point-to-point basis.

It can be argued that while the Smagorinsky model is not strictly valid from point

to point, it is still a reasonable approximation. Using this line of reasoning, each of
the six constraints implied by Eq. (4) would yield a different value of C, but the

variation between these values would be small. It is easy to show that this variation

can be minimized in a least squares sense by simply contracting both sides of Eq.
(4) with the model terms Mij. The resulting scalar equation can then be solved to
obtain a unique value of C.

The degree of success achieved by the least squares approach can be evaluated

through the use of the following correlation coefficient that is the tensorial analog
of the cosine of the angle between two vectors

MmnLm,_

,,- ,/___¢-L- _ (5)

where M 2 = Mm,Mmn. If the correlation coefficient is unity, the tensors M and L*

are perfectly aligned and the six constraints implied by Eq. (4) are identical. Values

of the correlation coefficient slightly less than unity imply reasonable alignment

between L* and M, corresponding to a small degree of incompatibility among the
constraints of Eq. (4). A correlation coefficient near zero indicates that L* and

M are nearly orthogonal and the constraints of Eq. (4) are strongly incompatible.

Negative values of the correlation coefficient have the same relative meaning, but
with the principal directions of L* and M having the opposite sense.

The correlation coefficient between L* and M, averaged over planes parallel to

the channel walls is displayed in Figure 4. In forming the average, the absolute
value of the correlation coefficient has been taken to avoid a fortuitous cancellation

between positive and negative values (negative wMues imply local backscatter). Also

included in Figure 4 are the correlation coefficients between T* and _ and r* and

5. All three correlations are quite similar. The correlations are nearly zero close

to the wall, from where they rise to a roughly constant value of 0.35 for most of

the channel. The extremely poor correlation near the wall is not surprising since
anisotropy is greatest in this region.

The low degree of correlation between T* and _, and r* and S invalidates the

assumed isotropic relationship between subgrid-scale stress and strain rate incor-

porated in the Smagorinsky model. When the dynamic procedure is applied to the

Smagorinsky model, the resulting equations for the coefficient C (Eq. (4)) attempt
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FIGURE 4. Plane averaged tensor correlation coefficients.
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to force this isotropic relation to hold. The resulting equations are inherently in-

consistent, and as evidenced by the low correlation between L* and M, the least

squares approach can be expected to yield erroneous results.

_.3 A principal alignment dynamic model

In light of the conclusions drawn in the previous section, it is clear that an

isotropic subgrid-scale stress model such as that of Smagorinsky leads to a poorly

conditioned set of equations for the model coefficient. The difficulty stems from

the assumed alignment between the subgrid-scale stress and the strain rate. The

assumed alignment carries through to Eq. (4), where an inconsistency arises since

the computed tensors L* and M are not aligned. This difficulty can be alleviated

through use of a model that does not assume alignment but rather performs op-

erations on S to align it with r. Such an anisotropic model is developed in this

section.

In developing the new model, it is most convenient to think in terms of principal

coordinates. Since both the subgrid-scale stress and the strain rate are real symmet-

ric tensors, each may be decomposed into three principal values and a corresponding

set of three mutually orthogonal principal directions. Thinking in these terms, the

strain rate tensor can be transformed exactly into the subgrld-scale tensor as follows.

First, each of the three principal values of ,_ is independently stretched to match the

corresponding principal value of r. Next, the principal directions of S are subjected

to three independent rotations to line them up with the principal directions of r.

Note that 6 degrees of freedom (three stretchings and three rotations) are needed

to match the principal values and align the principal directions of _ and r. This

is precisely the number of constraints that will arise from the dynamic procedure

(c.f. Eq. (4)). Thus if the principal alignment procedure is followed, there will be a
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uniquely determined solution for the stretchings and rotations.

The principal alignment procedure is now developed. Using matrix notation, r
and 5' are decomposed as follows

r = X_A,X_ I , S = XtAIX_ 1, (6a, b)

where Xr, X_ "1, and Xs, X_ "1 are the normalized eigenvector matrix and inverse for
r and S, respectively, while Ar and Aj are diagonal matrices of the corresponding

eigenvalues. The eigenvectors yield the principal directions, while the eigenvalues
give the principal values. Starting with Eq. (6a) and using Eq. (6b) it is possible

to write the following

r = X_A_X71

(A.)A,X71

=X. XZISX X7 m,

(7a)

(Tb)

where the ratio A_/Ai is equivalent to A_k/A_ , in index notation. The eigenvalue
ratios perform the required stretchings while the eigenvector products perform the

required rotations. Equation (Tb) has been included for clarity only; Eq. (Ta) is
the desired form. Note that Eq. (7a) requires the principal values and principal

directions of r. These can be estimated from the corresponding eigensystem of T.

If it is assumed that r scales with _21SI2 , and T with _2[_12 , then the following
relation will hold

= (8)
u

If it is assumed further that r and T share the same principal directions, then Eqs.

(Ta) and (8) can be combined to give

(9)

Thus r may be expressed in terms of the eigensystem of T. The eigensystem of T

is determined from Germano's identity (Eq. (3)) as follows

Lij = Tii - _'ii _ Tii. (10)

This approximation is justified on the grounds that the dominant contribution to

T are the precisely the highest frequencies that are removed by the filtering oper-

ation done in forming #. As illustrated in Figure 5, this approximation becomes
increasingly better as the filter width ratio A/A is increased.
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FIGURE 5. Plane averaged correlation coefficient between the tensors T and L as
a function of filter width ratio.

With the eigensystem of T approximated by the eigensystem of L, Eq. (9) takes
the final form

"r= XL _ AL XL'. (11)

_.4 Tests of the principal alignment model

The model developed in the previous section is subjected to the same tests given

to the dynamic model of Germano etal. in Section 2.1.
A scatter plot of the subgrid-scale dissipation is shown in Figure 6. The correla-

tion between model and exact values is seen to be fair. Even though the correlation

is only fair, it is a marked improvement from that corresponding to the dynamic

model. Note that the range of dissipation predicted by the principal alignment

model is roughly a factor of 10 less than that for the dynamic model. This is
significant since erroneously large values of positive dissipation are likely to lead

to numerical instability. The principal alignment model is also superior to the

Smagorinsky model in the sense that it is able to predict backscatter. Plane aver-

ages of the correlation coefficient between the model and exact values of dissipation

rate are shown in Figure 7.
The principal alignment model is seen to correlate somewhat better with the exact

values than does the dynamic model. There is still a local region of negative corre-

lation. This is an unsettling detail that will be addressed in future improvements to

the model. Plane averaged dissipation rate is shown in Figure 8. Agreement with

the exact values is seen to be good,

3. Summary and future plans

The primary motivation for this work was to eliminate the numerical difficulties
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FIGURE 7. Plane averaged correlation coefficient between exact and modeled

dissipation rate for the principal alignment model.

associated with the model of Germano et al. when local values of the model constant

are used. It was shown that the sUbgrid-scale stresses are not related isotropically

to the strain rate on a point to point basis. The Smagorinsky model is, therefore,
not valid in this sense, and its use in the dynamic procedure leads to an inconsistent

set of equations for the model coefficient. It was further shown that a more general,
non-isotropic relation between the subgrid-scale stresses and the strain rate leads to
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FIGURE 8. Plane averaged dissipation rate.

a dynamic model that correlates better with the exact values and contains roughly

an order of magnitude less erroneous scatter.
The next step in this work will be to test the principal alignment model in a

large eddy simulation to evaluate it for numerical stability and accuracy. This will
be done initially in simulations of isotropic, homogeneous turbulence. This phase

is currently being implemented, and preliminary indications are that the principal

alignment model does not lead to instability. The accuracy of the model is yet

unchecked. If simulations in homogeneous turbulence are successful, the new model
will be applied to the more challenging case of turbulent channel flow.

Improvements to the model will also be made. The principal alignment model

still has a tendency to predicts dissipation of the wrong sign (points in quadrants 2

and 4 in Figure 6). Modifications will be sought to reduce this effect.
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Large eddy simulations of passive and buoyant

scalars with dynamic subgrid-scale models

By W. Cabot

1. Motivations and objectives

Many flows of interest -- especially those occurring in geophysical and astrophys-

ical settings -- have very high Reynolds numbers and, therefore, large dynamic

ranges that cannot be captured by direct numerical simulation (DNS), even on to-
day's supercomputers. Large eddy simulation (LES) is thus required, in which the

large scale structures are resolved and the effects of the small, unresolved "subgrid"

scales on the large, resolved scales are modeled.

A new subgrid-scale (SGS) model has recently been developed by Germano et
al. (1991) that augments the standard Smagorinsky (1963) eddy viscosity model

by replacing the ad hoc, flow-dependent constant with a coefficient extrapolated
from the small, resolved scales in the LES. The coefficient automatically adjusts to

the flow conditions, including near-wall conditions so that no ad hoc wall-damping

functions are needed. This "dynamic" SGS model has been tested successfully by

Germano et al. (1991) in the LES of incompressible channel flow with plane-averaged
model coefficients, and the model has been extended to compressible flow by Moin

et al. (1991).
The immediate goal of this work is to test the performance the dynamic SGS

model and some of its possible variants in incompressible channel flow with passive

scalars and with Boussinesq buoyancy. The LES results with the dynamic SGS

model will be compared with low Reynolds number DNS data and with higher
Reynolds number laboratory data. The consequences of implementing the dynamic

SGS model at a local level rather than using globally averaged coefficients, which

would be useful for applications with more complex geometries, will also be explored.

A longer range goal of this work will be to test the performance of SGS mod-

els in the LES of flows with more complicated physics (e.g., rotation and density

stratification), applicable to geophysical and astrophysical systems.

2. Accomplishments

The basic dynamic SGS model for the residual Reynolds stress in LES was derived

by Germano et al. (1991). The model was extended to compressible flow by Moin

et al. (1991) and written explicitly for a passive scalar by Cabot & Moin (1991). A
brief summary of the dynamic model equations and their variants are provided in

§2.1 below for ready reference.
The dynamic SGS model for the passive scalar was evaluated a priori using DNS

databases of homogeneous turbulence by Rogers et al. (1986) and channel flow by
Kim & Moin (1989) to compute globally averaged SGS model coefficients. Results

from these a priori tests were presented in detail in Moin et al. (1991) and Cabot
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& Moin (1991). The key results from these tests are (1) the SGS turbulent Prandtl

number of 0.4-0.5 predicted by the dynamic model away from solid boundaries in

channel flow is about the same as that found to give the best performance in LES

with standard eddy viscosity models (Eidson, 1985; Erlebacher et al., 1990); and (2)

the SGS turbulent Prandtl numbers predicted by the dynamic model follow the same

trends as the large-scale Prandtl numbers near solid boundaries and for different

molecular Prandtl numbers and orientations of scalar gradients with respect to

the mean flow. This is an indication that the dynamic model in LES will predict

reasonable values for the residual scalar transport.

A channel flow code described in detail by Piomelli et at (1987) has been modi-

fied to include passive scalars and the dynamic SGS model with global coefficients

(determined from plane-averaged terms). Low Reynolds number LES results for

passive scalars generated by adding them at the bottom wall and removing them at

the top wall have been compared to DNS data of J. Kim (personal communication)

and Kim & Moin (1989); and LES results for a passive scalar generated by a uni-

form streamwise scalar gradient have been compared to DNS results of Kasagi et

al. (1991). Nusselt numbers from these LES results and others at higher Reynolds

numbers have been compared to the semi-empirical predictions of Kays & Craw-

ford (1980). These results have been presented in Cabot & Moin (1991) and are

summarized in _2.2.

This code has also been modified to simulate buoyant flows in the Boussinesq

approximation, in which the scalar becomes the density fluctuation or, equivalently,

the potential temperature. A low Rayleigh number case of B_nard convection has

been simulated with the simple passive scalar dynamic SGS model, and higher

Rayleigh number cases are under way. The results are being compared to the

laboratory data of Deardorff & Willis (1967) and the LES results of Eidson (1985).

Implementation of a dynamic version of a buoyant SGS model, like that used by

Eidson, is discussed in §2.3.

The application of local SGS coefficients in the dynamic model is found to lead

to numerical instability in this code (as well as in others), which is discussed in §2.4

below. The channel code of Kim et al. (1987), which is more generally robust in

terms of numerical stability, has also been modified to include the local dynamic

SGS model; numerical instability also arises in the LES using this code, apparently

due to persistent regions of negative eddy viscosity.

_.I The dynamic SGS model for passive scalars

In the LES of passive scalars, the residual Reynolds stress

(la)_'ij = ui uj -- ui uj

and the residual scalar flux

qi = Oui - 0_-7 (lb)

must be modeled. Here 0 is the passive scalar, and ui are the velocity components.

The overbar denotes the filtering operation, which here shall always refer to a sharp

cutoff filter in the homogeneous directions of the flow. Let rlj and qi be modeled

r
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by functions pij and _i. Further let the residual Reynolds stress and scalar flux at
a coarser scale,

-_- ^_Tii = _ - tt_ , (2a)
A

Q_ = 0 us - 0 _-7, (2b)

where the caret refers to the coarser "test" filter, be modeled similaxly by Mi i

and Hij. Though neither the terms in (1) nor (2) are computable in the LES, the
differences

_ij = T,_-_,_ = ,,,,,"--_-_, (3a)

are; hence

g,j = Mis - _is, (4a)

Fi = Hi - _i. (4b)

The Smagorinsky eddy viscosity model has the residual stress aligned with the

strain rate Sis:
P_J = -2v,_iS, v, -- CA_I_I, (5_)

^M_s= -2_,_,i, _, = c7,_ , (sb)

where, generally,

2Sis = ui,i -I- uS,i, IS] -= (2S'iSSIS)l/a ; (6)

and where A and _, axe the filter widths of the resolved field and the test filtered

field, respectively, whose definitions wig be discussed below. (Since the strain rate

is traceless, this model strictly applies to the traceless part of the residual stress;
in the incompressible equations, the trace of the residual stress is absorbed into the

reduced pressure.) The residual scalar fluxes can be modeled similarly with an eddy

diffusivity model in which they are aligned with the scalar gradients:

Hi = -_(_,,, _, = CeA'[_[. (7b)

The coefficient Co is also expressed in terms of the SGS turbulent Prandtl number

as C/Prt. Note too that the coefficients are assumed to be independent of the filter,

which allows them to be determined algebraically in equations (4):

_._j - t.**_iS/3 = -2CA_._,i, .M, s = (A/A)=I_I_, i -I:__l""_,s, (sa)

Fi = -Coa'7_,, 7_, = (a/")'l§l_,, -ISl"-_.i. (8b)

Other models for the residual Reynolds stress and scalar flux can of course be

adopted.
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Equations (8) are tensor and vector equations that overdetermine the scalar coef-

ficients. The scalar coefficients were extracted by Germano et al. (1991) and Moin et
at. (1991) by contracting (8a) with -Sij and (8b) with 0.i (the "strain-rate contrac-

tion"). Lilly (1991, private communication) suggested applying the least-squares

technique to these equations, resulting in the contraction of (8a) with .Adij and (8b)

with 7/i (the "least-squares contraction"). LES results from channel flow using both
contractions have been obtained with plane-averaging of the contracted quantities.

The filter width A is typically defined as the geometric ratio of the unidirectional

filter widths Ai (Deardorff, 1970): A 3 = AIA2A s. For a spectral cutoff wavenum-

ber Ki, Ai = 7r/Ki. However, since no explicit filtering occurs in the normal (y)

direction in the channel LES code, it may be more appropria_ to let A 2 : A3A 3.
The dynamic eddy viscosity and diffusivity depend only on A/A, so that, for all

_i/Ai the same, the former definition yields _/A = (_i/Ai)2/3 while the latter

yields _/A = _/A i for channel flow. LES results using both definitions of filter
width have been obtained and compared.

_. ?. LES of passive scalars

ALES channel code (see Piomelli et al., 1987) was modified to include passive

scalars and the dynamic SGS model. The code uses Fourier decomposition in the

homogeneous streamwise (z) and spanwise (z) directions and central finite differ-

encing in the normal (y) direction. Time advancement is performed semi-implicitly
with the Adams-Bashford, Crank-Nicholson method. The pressure is calculated di-

rectly in the Navler-Stokes equation. The plane-averaged part of the eddy viscosity

from the SGS model is integrated implicitly. The flow was filtered in the horizontal
directions with _1/A1 = A3/A3 = 2, which was found to yield the best a priori

test results by Germano et al. (1991), and the SGS coefficients were computed as
functions of normal direction and time from plane-averages of tensor and vector

contractions in equations (8).

Simulations were performed for passive scalars added at one wall and removed at

the other with Prandtl numbers Pr = u/a (where v and a are the molecular kine-

matic viscosity and scalar diffusivity) of 0.1, 0.71, and 2.0 for low friction Reynolds
numbers (ReT -- uT5/v _ 150, where u_ is the friction velocity and 5 the channel

half-depth); the strain-rate contraction was used with _/A = 22/3. The integra-

tions were performed on 32 × 63 × 64 meshes. The results were compared with DNS

data (J. Kim, personal communication; cf. Kim & Moin, 1989). It was found that

the SGS model was generally too dissipative. The mean streamwise velocity was

found to exceed the DNS values by 10% in the log layer (see Figure la); the mean

scalar from the LES also exceeded the DNS values substantially (the more so the

larger the Prandtl number; see Figure lb). The Nusselt number is defined by Kays
& Crawford (1980)as

Nu = (46/0,_)100/0y1_, (9)

where O,,, = (Ou)v/(u)v is the mass-averaged scalar (0v denoting a global aver-

age), and where the gradient of the scalar is evaluated at the wall. For Pr = 0.1,

0.71, and 2.0, Nu = 7.4, 21.0, and 35.2 for the LES and 7.2, 23.8, and 43.8 for
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FIGURE 1. Mean profiles for low-Re LES with the strain-rate contraction and

_/A = 22/3 (Case S1): (a) streamwise velocity ( .... ) and (b) scalar for Pr = 0.1

( ........ ), 0.71 ( .... ), and 2.0 ( ----- ); compared with the corresponding DNS

data of J. Kim (personal communication) ( -- ). Quantities are expressed in

terms of wall (+) units, i.e., scaled by _, u_, and the scalar wall flux q=.

the DNS, respectively, for the same mass-flux Reynolds number, Re,n - 45(u)v/v,

of 1.12 × 104. The corresponding values predicted send-empirically by Kays &

Crawford are Nu = 5.6, 24.9, and 47.5, respectively. (These values were obtained

from their Table 13-5 with a billnear interpolation of log(Nu - Nuo) in log Pr and

log Re,n, where Nuo is the laminar value. Note that they express a lack of confi-

dence in low-Pr values, and that the low-Pr values are also very sensitive to the

interpolation scheme.)
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FIGURE 2. Mean profiles of (a) streamwise velocity and (b) Pr = 0.71 scalar

for low-Re LES Cases S1 ( ........ ), S2 ( --.-- ), and M2 ( .... ) with a uniform

streamwise scalar gradient. The DNS results of Kasagi et al. (1991) ( ----- ) for a

uniform streamwise scalar gradient and those of Kim & Moin (1989) ( -- ) for a
uniform scalar source are shown for comparison.

Another set of low Reynolds number (Re, _ 150) simulations were performed

with a passive scalar of Pr = 0.71 generated by a uniform streamwise scalar gra-

client, which gives very similar results to scalars generated by a uniform source
term. Versions of the SGS model were used with the strain-rate contraction and

_/A = 22/3 (Case $1) and _/A = 2 (Case $2), and with the least-squares con-

traction with _/A = 2 (Case M2); this sequence of models was found to give

progressively less SGS dissipation (decreasing by an overall factor of 2). The mean
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streamwise velocity and scalar are shown from these calculations in Figure 2 and

compared with the recent DNS results of Kasagi et al. (1991) for a uniform stream-

wise scalar gradient and with the DNS results of Kim & Moin (1989) for a uniform
scalar source term. It is evident that the less dissipative the SGS model, the better

the agreement with the DNS data. The DNS results of Kasagi et al. had a Nusselt
number of 30.8 for Rein : 9160, or 9% lower than the value of Nu = 34.0 predicted

by Kays & Crawford (1980). The values of Nu from the LES Cases $1, $2, and M2

were 31%, 22%, and 10% lower than predicted by Kays & Crawford, the lattermost

case comparing very well with Kasagi et al.'s DNS results.
Simulations at much higher Reynolds number (Re,. ,_ 1400 and Re,,_ ,_ 1.2 x 10 s)

have been performed on a mesh of 32 x 125 x 64 for a passive scalar of Pr = 0.71
added at the bottom wall and removed at the top wall. The SGS model with

the strain-rate contraction and _/A = 22/s (Case $1) was found to be much too

dissipative and gave mean streamwise velocities about 25% too large compared to
the standard empirical log law, U + = 2.51ny + + 5.0, where y+ is the distance

from the wall in units of 6/Re_ and U + is the mean streamwise velocity in units of

friction velocity ur (see Figure 3a). Using the least-squares contraction gave much

better results, with the less dissipative model with _/A = 2 (Case M2) performing

somewhat better than with _/A = 22/3 (Case M1) (see Figure 3). The Nusselt

number for Case $1 is 20% below that predicted by Kays & Crawford (1980), Nu

for Case M1 is 3% higher, and Nu for Case M2 is 12% higher. The empirical curve

for the mean scalar by Kader (1981) is shown for comparison in Figure 3b. Case M2
is seen to have about the same level as Kader's in the scalar log-law region, albeit

with a slightly different slope. The large discrepancy at large y+ near midchannel

is because Kader's curve applies to scalars with uniform heating.
Note the occurrence of a bump in the mean streamwise velocity between y+ = 20

and 200 above the standard log law in Figure 3a; the reason for this discrepancy is

not yet known. Note, though, that this region where U + exceeds the log law actually
agrees well with the DNS results of Kim et al. (1987), who used U + = 2.51ny + +5.5

to fit their data; this concordance may be coincidental, however. Another problem

with the high Reynolds number simulation is the very short timesteps -- and large
amount of CPU and real time -- that are necessary to achieve statistical equilibrium

because of the refined mesh needed to resolve the wall layer; the convective CFL

number is greatest in the region between the viscous layer and the log layer. Some

sort of scheme for matching to the near-wall region, such as those used in the LES

of planetary boundary layers, may be necessary to increase the speed of the LES at

high Reynolds numbers for practical application.

_.3 LES of buoyant flows

The same LES channel code used in §2.2 above was also modified to calculate

buoyant flows in the Boussinesq approximation (cf. Townsend, 1976). At present,
the SGS model in this code is the same as that used for passive scalars described

in §2.1 above. Simulations of B_nard convection (with the bottom wall heated and

top wall cooled) are being performed for Rayleigh numbers (Ra = 8gs/_AO/ua,

where/_i = -/_i2 is the gravity vector times the expansion coefficient and AO is



198 W. Cabot

lOO 10a

FIGURE 3. Mean profiles of (a) streamwise velocity and (b) Pr = 0.71 scalar
for high-Re LES Cases S1 ( ........),MI (-----), and M2 ( .... ). The log

law,U + = 2.5Iny+ + 5.0,isshown ( -- )in (a)forcomparison. The empirical

formula of Kader (1981) is shown ( -- ) in (b) for Re_- = 1400 and Pr = 0.71.

the potentialtemperature differenceacrossthe channel)of 6.3 x l0s, 2.5 x I0e,

and 1.0x 10z. PreliminaryresultsgiveNusseltnumbers, definedhere as Nu =

2[a0/Oy]_,6/AO,of7.5and 12.0forRa = 6.3x 10sand 2.5x 106,which liebetween

the LES valuesof about 9.5 and 13.8found by Eidson (1985)and the laboratory

valuesof about 6.0and 8.0found by Deardorff& Willis(1967).The eddy viscosity

ut from the SGS model was found to be negativein the viscouswall regionfor

Ra = 6.3 x 10s (but very much smallerin magnitude there than the molecular

viscosity);in the Ra = 2.5x 10e simulation,ut has negativevaluesnear the wallin
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some realizations, but when averaged over time has positive mean values.

Many researchers who simulate buoyant flows feel that better results are obtained
with the inclusion of a buoyancy production term in the SGS model (derived, e.g.,

by Eidson, 1985); the resulting model is, instead of (5) and (7),

and

/_j = -2viSit, vt = CA2_, (10a)

Mij = -2_t_ij, _'t= C'A a_, (10b)

T/_= -a,_,_, at = CoA2_, (11a)

Hi = -_t_,i, _t --CoA:_, (11b)

- 2_,,-. I1/2JlSl'+ ,
where, generally,

(12)

is the new scaling factor. Nc is the convective lapse rate. For convectively stable

regions N_ < 0 (and N = {-N_I'/2 is the Brunt-Vg/sg/g frequency), in which case

the buoyancy production and the N_ term in (12) are usually assumed to vanish,
and the passive scalar SGS model is recovered. The dynamic model is now given

by

£1j-£kkSij/3=-2OA'A4ij, JVlij = (A/A)' _j - _'_ij, (13a)

The first complication that arises with this set of equations is the mode of contrac-

tion to extract C and Prt. A Ieast-squares anaiysis leads to a messy and ambiguous

result in the sense that one cannot even guarantee that one is minimizing the error!

Therefore, in continuity with the previous least-squares contraction, let the error

be minimized in the tensor and vector equations (13) with respect to only C, which

again results in a contraction with Adij and 7tl. Only SGS coefficients that are

functions of y and t derived from plane-averages (denoted by 0) of the contracted
quantities will be considered here; thus

2OA2(Adij.A_ij) = --(£1j._ij), (14a)

CA 2(74,?iI)= -Prt(F_Tii), (14b)

where the contracted terms are functions of Prt. Even with this simple contraction,

extracting the SGS coefficients presents a second complication since Prt is embedded

in square roots in the _r terms. Eliminating C from (14b) gives

Prz(Fi_f_)(2./Vljk.Adjk)- (_{i_/i)(£jk.Ad_)= 0, (15)

which isan expressionsolelyin terms of Prt. This equationcan be solvedforPrt

iterative]y(e.g.,by Newton's method), which can then be substitutedinto (14a)
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to extract C. This procedure has been followed in a priori tests of DNS data

for internally heated thermal convection in a channel (cf. Cabot et al., 1990); the

derivative of the function on the left side of (15) with respect to Prt, necessary to

compute the correction in the Newton's method, was computed by numerical finite

difference. In most planes, the procedure produced well converged solutions in only
a few iterations, but in many planes the solution took more than 10 iterations to

converge, and in rare instances no solution cotdd be found at all (implying either

complex solutions or problems with the numerical scheme). Multiple solutions also
cannot generally be ruled out. Some further refinement and optimization of this
iteration procedure is required in order to attain a more efficient version of it for
use in the LES channel code.

A sample of a priori results from the DNS of the internally heated, buoyant

channel flow (which is convectively stable in about the lower quarter of the channel
and unstable elsewhere) are shown in Figure 4, comparing SGS coefficients with and

without the buoyancy production term in (12). The DNS was performed on a mesh

with 128 points (64 wavenumbers) in both horizontal directions; the coefficients

shown in Figure 4 were computed for the same field on a "fine" mesh (using 32 and

16 wavenumbers for the resolved and test fields) and a "coarse" mesh (16 and 8
wavenumbers for the resolved and test fields). The coefficients from the fine field

show little effect of the buoyancy production term, except near the upper wall where

the buoyancy production is maxima]. The effect the buoyancy production term on

the SGS coefficients is much more evident in upper half plane using the coarser
field, which would be more likely be the resolution used in a LES of this flow.

_._ Numerical instability of the local dynamic SGS model

In order for the SGS model coemcients C and Co in (5) and (7) to be determined
by (8), they must, in strict terms, be independent of the test filter or, more generally,

be spatially independent of the directions in which filtering takes place. This is

properly satisfied in the channel flow for coefficients that depend on only y and
t determined from plane-averages. However, in order to extend the dynamic SGS
model based on eddy viscosity and diffusivity to a more local definition that is more

applicable complex geometries, this condition of self-consistency has been relaxed,
and we have considered local values of the SGS model coefficients determined from

equations (8). There is no obvious way yet to construct a self-consistent local eddy
viscosity using the dynamic SGS model approach.

Germano et al. (1990) noted early on that the strain-rate contraction of (Sa) leads

to an ill-conditioned local problem due to the denominator term A'/ijSij frequently
traversing zero. The least-squares contraction in principle solves this problem, since

one is now dividing by A,/ijA4ij and 7/_7/i, which are positive definite. A priori

test of DNS channel flow data has shown that this problem is still not very well

conditioned, because the denominators occasionally (perhaps as much as 1% of the

time) become very small, leading to large local spikes in the coefficients. Further,

the numerators (£_j./_i_j and FiT/i) exhibit the usual backscatter statistics, with

roughly half of the points being positive and the other half being negative (cf.
Piomelli et al., 1991). The result is local eddy viscosities and diffusivities that have



Large eddy airaulationJ of paasive and buoyant :calara 201

0

0

0

0

I
-1.0

°.•.,

• .

I_, d

.°

• , . I , , , , ,.r.J I I ' ' I ;. ," , , .

-0.5 0.0 0.5 1.0

0

c_

0

ro

c_

0

I
-1.0

,".°

b °., '.

°'°"°°..0•• ,,

°° j--,_
.'1 %

.°1 % s_.
..'J _. • % "

I "_ "

_. - _" ., _ .. s _ ._._. _

I I ' ' I • e I | J I .I I I J I ' ' '

-0.5 0.0 0.5 1.0

FIGURE 4. The (global) dynamic SGS (a) velocity and (b) scalar coefficients
from a priori tests of DNS data for an internally heated, buoyant channel flow with
Ra = 1.25 x l0 s and Pr = 0.04• The coefficients were computed using equations

(14) and (15) without the buoyancy production term in (12) on a fine mesh ( ----- )
and coarse mesh ( ........ ), and with the buoyancy production term on the fine mesh

( -- ) and coarse mesh ( .... ).

r.m.s, values much larger than (5-10 times) the mean values (which is expected),
but extrema that are often 100 times the r.m.s, values. Local spatial averaging or

filtering (over scales a few times the resolved scales, say) ameliorates the spikiness
of the local results, but only by factors of a few.

Some preliminary a priori tests were conducted exploring whether some of the ill

behavior of the local eddy viscosities and diffusivities were due to an inappropriate
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model which seeks to align the residual stresses and scalar fluxes with strains and

scalar gradients. One model (P. Durbin, personal communication) uses a second-
rank tensor SGS coefficient C_j, such that

= + (16a)

such that, instead of (8a),

£_ = --(C_k._k_ + Cj_)/x3 ;

(16b)

(17)

but this model alsoturns out to be ill-conditioned, since it involves dividing by the

determinant of A_, which frequently traverses zero. A more general model should

use a fourth-rank tensor for C and a second-rank tensor for Co (which Rogers et
al., 1986, found to be appropriate for the large-scale scalar fluxes). Another model
that was tested locally included the second-order strain term, such that

and so on. The least-squares analysis for C1 and C2 leads to the inversion of a

matrix, whose determinant again traverses zero frequently and thus leads to ill-

conditioned results. More sophisticated models that attempt to align the residual

stress to a more appropriate basis are currently being explored by T. S. Lund (this
volume).

The local dynamic SGS model (using equations [8] and some variants) was used

in the channel code described in §2.2. The code very quickly developed large nor-
mal pressure oscillations (resembling "2-A" waves) that caused the simulations to

blow up. It had been noticed previously that this code was unstable to sufficiently

choppy data, perhaps due to the direct computation of the pressure in the Navier-

Stokes equation and/or due to the central finite difference scheme employed. A

more stable channel code (see Kim et al., 1987) has recently been modified to in-
clude the dynamic SGS model with plane-averaged or local coefficients; this code
uses Chebyshev decomposition in the direction normal to the walls and solves the

Navier-Stokes equation in a form that has the pressure eliminated from it. The

SGS residual Reynolds stress and scalar flux are integrated fully explicitly, and
the CFL condition due to the SGS diffusion is monitored (which generally limits

the timestep for local SGS coefficients due to their inherently large maxima). A

simulation with plane-averaged SGS coefficients was performed and experienced no

instabilities. When the local model (from [8]) was employed, the SGS dissipation

quickly changed sign from a damping state to a growing state (corresponding to a
build-up of local negative eddy viscosity), and the calculation blew up. The simu-

lation did not, however, exhibit the wild pressure oscillations characteristic of the
previous finite-difference code. Similar instabilities were observed for various de-

grees of local averaging or filtering, despite a reduction in the r.m.s, and extremal

Z
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levels of eddy viscosity/diffusivlty. Similar instabilities were also observed using

variants of the model in (5) and (7): in one, the mean strain rate and scalar gradi-

ent were excluded from the definitions, similar to that used by Moin & Kim (1982);
and in another only the last octave of wavenumbers at a given filter level were used

to compute [S]. The numerical instability apparently arises from regions of negative
eddy viscosity that persist long enough with respect to the integration timesteps to

cause the calculation to diverge exponentially.

Another local dynamic SGS model was attempted, which is locally self-consistent

but not per se an eddy viscosity/diffusivity model, namely making the residual stress
and scalar flux proportional to their counterparts in (3) with scaling factors:

A priori tests indicate that this model should be dissipative (in the mean). In this
LES, the SGS model dissipation also went from damping to growing, causing the
simulation to blow up in a similar time as the local eddy viscosity models. The

reason for the numericM instability is likely the same -- with persistent regions of

"backscatter" experiencing runaway growth -- although an analogy with negative

viscosities is no longer exact.

3. Future plans

Further testing of the dynamic SGS model for passive scalars with global (plane-

averaged) coefficients in the LES in channel flow will continue. In particular, the
performance of SGS models that use the fluctuating part of the strain rate tensor (_

la Kim & Moin, 1982) will be tested. Also at issue with the hlgh Reynolds number
simulations is (1) explaining the deviation from the log law observed in the mean

streamwise velocity profile; and (2) exploring means to increase the integration

timesteps in the simulations (e.g., using near-wall matching conditions).
Much more extensive testing of the dynamic model for buoyant flows will be per-

formed. The sequence of simulations of B_nard convection discussed in §2.3 will be

completed and compared in detail to the laboratory and LES results; in particular

the SGS model that includes the buoyancy production terms will be implemented,

and it will be determined if its added computational costs are worth the benefits,

if any, it confers. The LES of B_nard convection at somewhat higher Rayleigh

numbers (near the "hard turbulence" r_gime) will be attempted and compared to

laboratory results (e.g., Heslot et al., 1987) of statistical quantities like Nusselt num-
ber and vertical velocity-temperature correlations. The LES of internally heated,

buoyant flow will also be performed for different versions of the dynamic SGS model

and compared to laboratory results (e.g., Kulacki & Goldstein, 1972) and numerical

simulation results (e.g., GrStzbach, 1982).
The performance of the dynamic SGS model in the presence of rotation will also

be explored, in particular whether the model can automatically take account of the
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observed rotational inhibition of the turbulent transfer of energy to small scales

(Bardina et al., 1985) within the framework of a simple eddy viscosity model, or

if additional modeling terms are needed. The effects of differential rotation will

also be considered. DNS data from uniformly and differentially rotating buoyant

flows will be used for comparison (e.g., Cabot et al., 1990; Cabot & Pollack, 1991).

An important, ultimate application of a successfully developed and tested SGS

model will be in the LES of large Reynolds number geophysical and astrophysical

flows with differential rotation, thermal convection, large density stratification, and

perhaps other compressibility effects.

Finally, the dynamic SGS model has only been successfully employed with global

eddy viscosity and diffusivity coefficients, which limits its application to flows with a

large degree of homogeneity. A model that uses locally determined coefficients would

have more universal applicability to geometrically complex flows. Considerable

effort will be devoted to removing this deficiency.
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Dynamic subgrid-scale modeling
of compressible turbulence

By Kyle D. Squires 1

The dynamic subgrid-scale modeling concept formulated by Germano et al. (1991)

for incompressible flows has been successfully extended to compressible turbulence.

Most of the results of this extension have been reported by Moin et a/. (1991).

This report will serve to highlight the main accomplishments and unresolved issues

and provide possible directions for future work and improvements to the concept of
dynamic modeling for large-eddy simulation.

1. Motivation and objectives

The accurate prediction of turbulent flows at high Reynolds numbers remains

a formidable challenge for computational fluid dynamics. Because of the rapid
increase in the range of length scales with increasing Reynolds number, direct nu-

merical simulation (DNS) is not feasible for predictions of high-Reynolds number

turbulent flows of engineering interest. Thus, predictions of turbulence at high
Reynolds numbers can only be obtained by solving some suitably averaged form

of the Navier-Stokes equations. Averaging the governing equations gives rise to
correlations of turbulence quantities which must be modeled using various levels of

approximation. This report is concerned with subgrid-scale modeling for large-eddy

simulation (LES).
To date, the accuracy of predictions of turbulent flows obtained using LES have

been limited because of unreliable subgrid-scale models. The principal deficiency

associated with previous subgrid modeling efforts has been an inability to predict a
wide class of flows with a fixed set of model constants. This deficiency arises primar-

ily because of the fact that nearly M1 previous models (subgrid or otherwise) have

required ad hoc prescriptions of the model constants. The model constants used

in these computations are usually calibrated to yield good agreement with a par-

ticular laboratory experiment or DNS computation. It is not surprising, therefore,

that it is difficult to obtain accurate predictions of different flow fields in arbitrary

geometries using the same model constants.

Many of the deficiencies associated with previous subgrid-scale modeling efforts
were remedied by the recent work of Germano et al. (1991). Briefly, these investi-

gators recognized that because the large-scale field in LES is computed directly, a

great deal of information regarding the structural interactions of the resolved scales

is available as part of the computation. The advance gained by Germano eta/.

was utilization of this information in formulation of the subgrid-scale model. Us-

ing an algebraic identity developed by Germano (1990), they formulated an eddy

1 Present address: The University of Vermont, Dept. of Mechanical Engineering
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viscosity model for the subgrid scale stresses in which an expression for the model
coefficient is obtained as a function of the local properties of the flow. To deter-

mine the model coefficient in this manner, it is first necessary to define the velocity

field at two levels of resolution. It is further necessary to assume that the turbulent
stresses at both levels of resolution are similar and may, therefore, be modeled using

the same functional expression. Computations of transitional and fully-developed

turbulent channel flows using this concept showed very good agreement with DNS

data. It should be emphasized that in these computations, no ad hoc calibration

of the model coefficient was required. The results obtained by Germano et al. were

as good or better than previous LES computations in which "tuning" of the model

constant was used to improve comparison of LES results and experimental data.
Given the encouraging results obtained by Germano et al. for incompressible

turbulence, the primary objective of the present study was the extension of the

dynamic modeling concept to compressible turbulence. The secondary objective of
the work was a posteriori tests of the dynamic model using LES of homogeneous

turbulence. In the first computation, LES of decaying, incompressible, isotropic
turbulence was performed. The LES results were compared to the experimental data

of Comte-Bellot & Corrsin (1971) (CBC hereafter). In the second computation, LES

of decaying compressible, isotropic, turbulence was performed. For this case, LES

results were compared to filtered DNS data. As is shown in Section 2, comparison
of LES results to both laboratory experimental data and DNS data is excellent.

2. Accomplishments

In the first phase of the research, the dynamic modeling concept was extended to

compressible turbulence. Only the salient features relevant to compressible turbu-

lence are summarized in section 2.1. The reader is referred to Moin et al. (1991) for

a complete derivation and discussion of the governing equations. Contained in sec-

tion 2.2 are representative comparisons of LES results to the experimental data of

CBC for incompressible turbulence. The reader is again referred to Moin et al. for a

complete comparison of LES and experimental results for the simulations of incom-
pressible turbulence. Comparison of LES results from simulations of compressible,

isotropic turbulence to filtered DNS data are contained in section 2.3.

2.1 Model development

As shown in Moin et al. (1991), filtering the compressible Navier-Stokes equations

yields the subgrid-scale stress, rij, and subgrid-scale heat flux, qj:

and

h

rij = puiuj pui puj , (2.1a)

qJ = pujT pujpT (2.1b)

In (2.1), ui is the component of velocity in the i th direction, and # and T are the fluid

density and temperature, respectively. Throughout this work a filtered quantity is
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denoted with an overbar. For compressible turbulence, it is also convenient to define

a density-weighted (i.e., Favre-filtered) quantity as

f= 7. (2.2)

Itisimportant to note that thereare subgrid-scalequantitiesin additionto those

given by (2.1)which ariseupon filteringthe compressiblemomentum and energy

equations. For example, the viscousterms in the momentum equation as well

as the viscousdissipation,pressuredilatation,and heat conduction terms in the

thermalenergy equationallhave contributionsat the subgrid-scalelevel.However,

the objectivesof the presentstudy were the extensionand testingof the dynamic

modeling conceptforcompressibleturbulence.Therefore,the neglectoftheseterms

isjustifiedinthe presentcontext.

The key element of the dynamic model concept is the utilizationof spectral
informationcontainedinthe resolvedfieldinformulationof the subgrid-scalestress

model. To incorporatespectralinformationintothe model for the subgrid-scale

stress,itisnecessaryto definean additionalfilter,known as the "testfilter".The
A

testfilterappliedtoa function7 isdenoted asf. Applicationofthe testfilterto the

momentum equationsyieldsthe test-fieldstress,Tij.For compressibleturbulence,

thisquantityisgiven by

pui pu i (2.3)Tij = puiuj - - ..

As shown by Germano (1990), the test-field stress, Tij, and subgrid-scale stress, ri i,
are related to the resolved turbulent stress, ff_ij:

A A

^ (-7)_.u,.-:^ ..,,£ij = Tii - ro .... -P

The right-hand side of (2.4) may be explicitly evaluated as part of the computation.
Therefore, manipulation of (2.4) will permit an expression to be obtained for Tij in

terms of local flow properties. In the present study, the anisotropic part of r 0 was

modeled using the Smagorinsky (1963) eddy viscosity model:

_1¢
{ 1_

r,i- _'1 = -2Cs_A21SI |Si# - Skk&i/ (2.5)
3 \ 3 /'

where

is the resolved-scale strain rate,

(2.6)

[ _ _ \ 1/2

ISl = {2siis, i) (2.7)
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is the magnitude of the strain-rate tensor, and q2 is the isotropic part of nj. The fil-

ter width associated with the grid level filter is denoted A in (2.5). In incompressible
turbulence, q2 may be absorbed into the pressure variable. However, the pressure

in compressible turbulence satisfies its own evolution equation, and, therefore, the

subgrid-scale energy must be explicitly modeled. As reported in Moin et al. (1991),

the subgrid-scale energy is modeled using Yoshizawa's (1986) parameterization:

q2 --_2C -_A 2[_[2 . (2.8)

The reader is referred to section 2.3 for further discussion of modeling the subgrid-
scale energy.

As shown above, (2.5) and (2.8) are the models for the turbulent stresses at the

grid level. If it is assumed that expressions similar to (2.5) and (2.8) may be used
to parameterize the turbulent stresses at the test field level and further assumed

that the model coefficients are identical at the grid and test field levels, then (2.4)

may be used to obtain expressions for Cs and C1 in terms of local flow properties.

For example, if the Smagorinsky model is used for the anisotropic part of rij and
7_j, then (2.4) may be written as

= 2CsM ], (2.9)

where

= + (2.10)

The * superscript on the tensors in (2.9), (2.10) and elsewhere in this manuscript
denote the trace-free part of the tensor. An additional approximation has been made

in (2.9) with regards to Cs. As shown in (2.4), it is the teat-filtered value of r_j

that is required. If the model coefficient is a function of the three space dimensions,
then it is the test-filtered value, Cs, that should appear in (2.9) in addition to the

grid-level value. For purposes of determining Cs, however, it has been assumed
that these coefficients are identical. If the difference between the test-filtered and

grid-level values of Cs is large, then (2.9) is at best a rough approximation and may

yield erroneous values of the model coefficient.

One method of determining a unique value of Cs from the system of equations

(2.9) is by contraction of (2.9) with an appropriate tensor. Germano et al. (1991)

and Moin et al. (1991) used the resolved-scale strain-rate tensor, Sly, to determine
Cs in simulations of turbulent channel flow and homogeneous turbulence. This con-

traction represents an ad hoc feature of the dynamic approach. Lilly (1991, private
communication) has shown that a least-squares approximation to the solution of
(2.9) leads to the following expression for Cs:

Cs=
2M_M_ " (2.11)
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The model coefficient, C/, may be obtained directly using (2.8) and the correspond-

ing model for 7_:

£k_ (2.12)

2_2_1_12 - 2A2_1,_12 .

Consistent with the level of approximation used to model rij in (2.5), the subgrid-

scale heat flux is approximated using an eddy diffusivity model:

qj = , (2.13)

and a turbulent Prandtl number is used to relate aT to the turbulent eddy viscosity:

PrT = --°tT = OlT (2.14)
vr CsA21 I "

The procedure to obtain an expression for PrT in terms of local flow properties is
the same as that used for Cs and CI. For this case, application of the test filter

to the thermal energy equation yields the test-field heat flux, Qj. This quantity is

given by

Q.j = pujT __ ,
P

and togetherwith qj isrelatedto the resolvedturbulentheat flux,7"/j:

(2.16)

Equation (2.16) is the counterpart of (2.4) for the thermal energy equation. Assum-

ing that an expression similar to (2.13) may be used to parameterize the heat flux
at the test-field level and further that the turbulent Prandtl number is the same at

the test and grid levels, then substitution of the models for Qj and qj into (2.16)

yields
Cs

Tit = PrT Rj, (2.17)

where

c3xj "
(2.18)

Moin et al. (1991) contracted (2.17) with cgT/cgxj to determine PrT. Using the least-

squares approach proposed by Lilly, the turbulent Prandtl obtained using (2.17) is

Prt = RjRj (2.19)
Cs RjT"_j



212 K. D. Squires

The only adjustable parameter of the subgrid-scale models for the turbulent stresses
and heat flux shown above is the ratio of filter widths, A/A. LES results have been
found to be rather insensitive to this ratio (e.g., see Germano et al. 1991 and Moin

et al. 1991). For the results presented in this report, the test-field filter width was
twice the grid-level filter width.

Equations (2.11), (2.12), and (2.19) are expressions for the model coefficients

which are functions of the three space dimensions and time. In principle, these

expressions may be used directly in LES computations, in practice, however, large
gradients in the model coefficients, and hence the subgrid stress and heat flux result

because of regions in which the denominators of (2.I1), (2.12), and (2.19) become

small. An additional difficulty which arises is numerical integration of the regions
in which the turbulent eddy viscosity is negative. Examination of DNS data of

homogeneous turbulence and fully-developed turbulent channel flow by Piomelli

et al. (1991) has shown that energy transfer in roughly half of the domain is up-

scale. This in turn implies that the eddy viscosity is negative over a large region
of the computational domain. Both the effects of large gradients in the model co-

efficients as well as negative VT have been found to lead to numerical instability in

simulations of incompressible and compressible homogeneous turbulence. For this
reason, local spatial averages must be applied to the numerators and denominators

of (2.11), (2.12), and (2.19). Spatial averaging is required whether Cs and PrT are

obtained by contraction with SO and _/azj or M,j and Rj. However, a priori
tests using DNS data of compressible turbulence have shown that values of Cs and

PrT obtained by contraction with M,j and Rj exhibit much less scatter than those

obtained by contraction with ,_ij and _/Ozj. Therefore, the model coefficients

used in all of the simulationspresented in sections 2.2 and 2.3, whether obtained by

contraction with Sij and OT/Oxj or Mij and Rj, were obtained by averaging the
numerators and denominators of the relevant expressions over the computational

box. LES results demonstrating the difference in the two contractions are discussed

in section 2.3. Finally, the issue as to whether the nature of the instability in sim-
ulations using the dynamic model is strictly numerical or arises because of some

underlying physics that the simple eddy-viscosity type models shown above cannot

represent remains an area of current research. The reader is referred to the reports
by W. Cabot and T. S. Lund in this volume for further discussion of these issues.

_._ LES of incompressible turbulence

The accuracy of the dynamic model was first tested in LES of decaying, nearly

incompressible, isotropic turbulence. A code used by Lee et al. (1991) for solu-
tion of the compressible Navier-Stokes equations was modified to incorporate the

dynamic subgrid-scale model described in section 2.1. For these simulations, LES
results were compared to the experimental data of CBC. The initial conditions of

the solenoidal velocity field possessed the same radial energy spectrum as in the
high Reynolds number experiment of CBC at the first downstream station of the

turbulence-generating grid in the wind tunnel (Uot/M = 42, where Uot is the down-

stream distance,, U0 is the mean velocity, and M is the mesh size). The dilatational
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velocity field was initially everywhere zero and remained small throughout the sim-
ulations.

The form of Cs and PrT in the simulations of nearly incompressible turbulence

was not that given by (2.11) and (2.19). For these simulations, the model coefficients

were obtained by contraction with S_j and O'_/azj, respectively, i.e.,

(,c,'js;,)
= ' (2.20)

pr___2= (Rj (2.21)
Cs /_. a_"_ "

J Oz$ !

The angle brackets () denote averaging over the computational box.
Shown in Figure 1 is the temporal development of the resolved scale turbulence

kinetic energy for computations using 32 a and 643 grid points. Also shown in this

figure is the filtered value of the experimental turbulence energy obtained from CBC.

As can be seen from the figure, agreement between the LES results and experimen-

tal measurements is excellent for both grid sizes. The computed and experimental

radial energy spectra are shown in Figures 2 and 3 for these grid sizes and further

demonstrate the good agreement between experimental measurements and LES re-
sults obtained using the dynamic model. An estimate of the total turbulence kinetic

energy was made using (2.8) to account for subgrid-scale energy. The resolved tur-

bulence energy and the contribution from (2.8) for the subgrid-scale component was

within 5% of the experimental values at the two downstream measurement locations
from the experiment.
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FIGURE 1. Time development of resolved-scale turbulence kinetic energy from

LES of isotropic turbulence, o, filtered data of CBC (322); .... , LES (322); .",

filtered data of CBC (642); ........ , LES (642).
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The model coefficients from both the 323 and 643 LES computations are shown

in Figure 4. It may be observed from the figure that the model coefficients attain

reasonably stationary values following an initial transient. It is also interesting to

note that the equilibrium value of Cs is comparable to the value of the Smagorinsky

constant used in early LES studies of isotropic turbulence (e.g., see Mansour et al.

1979).
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FIGURE 4. (a) Time development of model coefficients from LES of isotropic

turbulence. --, Cs (323); .... , CI (323); -----, Cs (643); ........ , CI

(643). (b) Time development of turbulent Prandtl number from LES of isotropic

turbulence. _ (323); .... (643).
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1i.8 LES of compressible turbulence

The dynamic model described in section 2.1 was also used in LES of compressible,
isotropic turbulence. For these simulations, LES results were compared to filtered
DNS data. The DNS results were computed using 963 grid points, and the initial

energy spectra of the solenoidal and dilatational velocity fields were of the form

E(k) ~ k'e_ [-2(k/kp) 2] . (2.22)

The value of kp, the wavenumber corresponding to the peak in the energy spectrum,

was 4 (for a computational box of length 27r per side). The initial velocity fluctu-
ations were scaled such that the fraction of kinetic energy initially residing in the

dilatational mode was 20% of the total. The initial density fluctuations were zero,

and the initial turbulence Mach number was 0.4. The initial pressure fluctuations

were scaled such that the compressible energy was equally partitioned between the

kinetic and potential modes. Therefore, these simulations provided a good test of

the dynamic model for flows in which the dilatational velocity fluctuations were

non-negligible and thermal pressure fluctuations were relatively large. The LES
results were computed using 323 grid points, and the initial conditions for these

computations were identical to the DNS data up to the cutoff wavenumber.

Aside from examining the performance of the dynamic model in LES of fully

compressible turbulence, another objective of this phase of the study was exam-
ination of the effect of the contraction used to extract the model coefficients on

simulation results. LES results obtained using model coefficients extracted using

the "least-squares" contraction, i.e., equations (2.11) and (2.19) were compared to
results obtained from the "strain-rate" contraction, i.e., equations (2.20) and (2.21).

For both the least-squares and strain-rate contractions, the model coefficient CI was

given by equation (2.12). Shown in Figure 5 is the temporal evolution of the model
coefficients obtained using both of the contractions. As can be seen from the figure,

the value of Cs obtained using the least-squares contraction is 40-50% less than the
value obtained from the strain-rate contraction. Figure 5b shows that the turbulent

Prandtl number is insensitive to the particular tensor used for the contraction.

Shown in Figure 6 are LES predictions of the resolved scale density fluctuations

along with filtered DNS data. As can be seen from the figure, better agreement is
obtained between filtered DNS and LES data for the simulation in which the least-

squares contraction is used to extract the model coefficients. The decrease in Cs

obtained using the least-squares contraction over the strain-rate contraction (see

Figure 5a) translates into smaller eddy viscosities and, therefore, less subgrid-scale

dissipation. This in turn improves the agreement between filtered DNS density
fluctuations and LES results. It is emphasized that the results in Figure 6 are rep-

resentative of the improvement of LES predictions obtained using the least-squares

contraction. For example, LES predictions of energy spectra and temporal develop-
ment of other thermodynamic quantities are in better agreement with filtered DNS

data when using equations (2.11) and (2.19) for Cs and PrT, respectively.

Radial energy spectra of the solenoidal and dilatational velocity fields at two
instances in the flow evolution are shown in Figures 7a and 7b. The spectra in
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FIGURE 5. (a) Time development of model coefficients from LES of isotropic

turbulence. --, Cs (least-squares); .... , Cx (least-squares);---_, Cs (strain-
rate); ........ , Cz (strain-rate). (b) Time development of turbulent Prandtl number

from LES of isotropic turbulence. _ (least-squares); .... (strain-rate).

Figure 7a corresponds to the time at which the total kinetic energy had decayed
30% from its initial value (0.72 eddy turnover times). From this figure, it is evident

that significant subgrid-scale energy resides in the dilatational mode of the velocity
field. There is also seen to be very good agreement between the LES and DNS

spectra. The spectra in Figure 7b corresponds to the time in the simulation at

which the total kinetic energy had decayed 65% from its initial value (1.98 eddy

turnover times). This figure also demonstrates the good agreement between LES

and DNS spectra. It can be observed from the figure that the evolution of the

r
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FIGURE 6. Time development of resolved scale density fluctuations from isotropic

turbulence, o, filtered DNS data; .... , LES (least-squares); -----, LES (strain-

rate).

dilatational velocity field is especially well predicted. At the later time, Figure 7b

also shows slightly greater dissipation in the LES spectra of the solenoidal velocity

field relative to the DNS spectra.

For all of the results presented thus fax, the subgrid-scale energy, q2, was modeled

using ¥oshizawa's parameterization (2.8) with the model coefficient given by (2.12).

Speziale et al. (1988) has shown that the subgrid model formulated by Yoshizawa

suffers from the fact that it is valid only for weakly compressible turbulence and a

large-scale velocity field which is divergence free. A priori tests using of (2.8) by

Speziale et al. also showed poor correlation between the model expression and exact

values of subgrid-scale energy obtained from DNS data of compressible, isotropic
turbulence. To test the effect of the model for q2, an expression derived by Squires

& Zeman (1990) which makes explicit account of the effect of large-scale dilatation

on subgrid energy was also used in LES computations. The model of Squires &

Zeman for q2 is

V_

TPrT 0
(2.23)

In (2.23) _ is the adjustable coefficient which can be determined following the

procedure outlined in section 2.1.

LES results obtained using (2.23) for q2 are compared against those obtained

using (2.8) in Figure 8. This figure shows negligible difference in LES results using

either expression for q2. In fact, it can also be observed in Figure 8 that neglect

of the subgrid-scale energy, equivalent to setting Ct or/_ to zero, slightly improves

the agreement between LES and DNS results, though this improvement is only of
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963); ---q, solenoidal velocity (LES, 323); ........ , dilatational velocity (LES, 323).

the order of 1%. Erlebacher et al. (1990) have proposed a subgrid-scale model in
which the effect of subgrid-scale energy is neglected, i.e., C! = 0. Erlebacher et al.

set C! = 0 based upon the results of a priori tests which showed the magnitude of

the subgrid-scale energy gradient, IVq21, was small relative to the magnitude of the

pressure gradient, IV_l. For the simulations of compressible turbulence presented in

this section, it was also found that the subgrid-scale energy gradient is small relative
to the thermodynamic pressure gradient. Therefore, it is difficult to determine the

effect of the model for q2 on LES results since the contribution of this term in the

transport equations is small. In the LES results present in section 2.1, however, the



Dynamic subgrid-scale modeling of compressible turbulence 221

contribution of the subgrid-scaie energy in the transportequations was comparable

to (40-50% of) that of the pressure. This was primarily due to the fact that a much

larger fraction of the total kinetic energy was contained in the subgrid velocity field.
For these cases, it was also found that neglect of q2 had little influence on LES

results. A possible explanation of this may be due to the fact that it is the gradient

of subgrid-scale energy which is appears in the momentum equations. Therefore,
this term does not affect the overall energy balance of the large-scale field, i.e., it

is only the anisotropic part of r 0 which affects the overall transfer of energy from
large to small scales.

0.3 I /%' 1 ' I ' i ' _ ,

,_
O.1

0.0
0 0.5 I 1.5 2 2.5

t /_'e

FIGURE 8. Time development of resolved scale density fluctuations from isotropic

turbulence. Q , filtered DNS data; .... , LES, equation (2.12); __.w , LES,
equation (2.23); ........ , LES, CI = 0.

3. Future work

The extension of the dynamic modeling concept of Germano et al. (1991) has
been successfully extended to LES of compressible turbulence. Agreement between

LES results and both experimental as well as DNS data is as good or better than

previous computations in which model coefficients were calibrated against a specific

laboratory or DNS experiment. The model coefficients used in the simulations
presented in this report reflect the local temporal properties of the flow field. To

take full advantage of the dynamic approach, the model should be applied locally.

Initial attempts at using local values of the model coefficients have not yet yielded

numerically stable computations. The instability that arises in these computations

invariably appears first in the energy equation as two-delta waves in the temperature

field. The energy in these waves eventually exhibits exponential growth, resulting
in unrealizable values of the temperature.

There are a number of possible causes of the instability in computations using
local values of the model coefflcientsl Numerical difficulties in integration of the
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Navier-Stokes equations with highly-variable viscosity as well as deficiencies asso-

ciated with the Smagorinsky model, or even a combination of both factors, may
cause instability.

In the present study, the overall energy transfer from large to small scales was well

predicted. However, an aspect not yet addressed for LES of compressible turbu-
lence is incorporation of subgrid dissipation by eddy shocklets. Parameterizations

proposed by Squires & Zeman (1990) of shocklet dissipation for subgrid-scale mod-
els exhibited very poor correlation between actual and modeled dissipation. It is

important that the dynamic model applied in a local sense account for the locally
large dissipation due to eddy shocklets.

Logical candidates for subsequent tests of the dynamic model are inhomogeneous
flows such as shock-turbulence interaction or shock-boundary layer interaction. For

LES computations, shock capturing techniques must first be developed, and this

is a complex issue in its own right. Recent work by Yoshizawa (1991) in subgrid-

scale model development for compressible turbulence has yielded more sophisticated

subgrid-scale models which might be useful for simulation of these more complex
flows.
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Probability density function approach and
related closures for turbulent scalar fields

By Feng Gao

1. Motivation and objectives

Turbulent flows are characterized by highly irregular flow patterns and, therefore,

require statistical descriptions (Monin & Yaglom 1975; Tennekes & Lumley 1973).

The probability density function (PDF) of a turbulent field provides complete sta-

tistical properties of the quantity concerned.

The PDF approach is especially useful when applied to complicated statistical

behavior of turbulent fields, such as intermittency (Kraichnan 1990a, 1990b), and

highly nonlinear reacting flow problems (O'Brien 1980, Pope 1985, Bilger 1989).

Intermittency refers to the "bursting" signal that is frequently observed in a tur-

bulent flow. Its presence is normally represented by long tails of the velocity or

scalar gradient PDF (non-Gaussian tails). The application of the PDF method

to this problem seems to be natural. For reacting flow problems, the chemical

source terms are usually nonlinear and have to be modeled if the traditional mo-

ment method is employed. Given the fact that there are many different types of

reactions, these models, if they can be constructed, are very likely to be problem

oriented and do not have widespread applicability. On the other hand, the PDF

approach provides a closed form for the reacting source terms, which makes it an

attractive method in dealing with turbulent reacting flows (Pope 1990).

However, the PDF method is not without its setbacks: the major difficulty asso-
ciated with the PDF method has been the unclosedness of Ficklan diffusion terms

in the PDF formulation. Recently, the mapping closure was formulated to address

this difficulty (Chen et al. 1989, Gao & O'Brien 1991, Pope 1991). It has been

shown that this closure model captures major characteristics of the scalar PDF's

(Gao 1991a, 1991b; Pope 1991). The mapping closure has been used to study some

fundamental problems in turbulence, such as the intermittency of the velocity and

scalar gradient fields (Kraichnan 1990, Gao et al. 1991).

Our current study generally concerns the development of PDF methodology in

turbulence research. More specifically, our efforts have been focused on various

aspects of the mapping closure models in PDF approach. The results of mapping

closure are tested against the available direct numerical simulation (DNS) data to

further validate the model. Encouraged by the success of single scalar mapping

closure, we have extended the same idea to cases with more than one species, which

is a rather natural step because most reactions involve many reacting species.

It should be pointed out that any single-point PDF only provides local informa-

tion of the concerned field. In other words, the interactions between different points

in a turbulent field cannot be properly described by a single-point PDF. The map-

ping closure model, being a one-point closure model, certainly cannot be exempted

P,__INI'ENTIONALLY Bl_-I'lll PRECEDING PAGE BLANK NOT FILMED
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from this shortcoming. There have been two ways to cure this problem. The first

one is to introduce two-point PDF's. But this method does not solve the problem

at all because three-point information would be needed to close the two-point PDF
and this hierarchy would continue to higher level. Also, this method complicates

the problem by doubling the dimension of the problem, which makes numerical sim-

ulation very difficult (Pope 1990). The second method, which is widely accepted, is
to characterize the effects of turbulence by a time scale. Other turbulence models
axe used to determine this time scale.

In the second method, the scalar PDF in a turbulent field would evolve in the

same way as in the pure diffusion case with a modified time. As a consequence

of this argument, an initial Gaussian scalar PDF remains a Gaussian distribution.

However, recent DNS and experimental results have shown that this may not be the
case (Kraichnan, private communication). Figure I(B) shows the PDF of a scalar

field evolved from an Gaussian initial state (Figure I(A)) in a stationary turbulence
field in a 643 direct simulation. The development of non-Gaussian tails is obvious.

Similar simulations are performed for the pure diffusion case with essentially the
same initial field (the only difference being that a different random seed is used

in generating the initial field) by turning the velocity field off. As expected, the

PDF in this case remains Gaussian (Figure I(C)). Our analysis suggests that the

representation of the turbulent effect may have over-simplifled the problem (Gao
et al. 1991). W. C. Reynolds and P. A. Durbin have also pointed out on differ-
ent occasions that the structure of the turbulence field should be reflected in the

PDF formulation. Hence, an attempt has been made to study detailed interaction
between scalar and velocity fields.

2. Accomplishments

$. 1. Mappin 9 closure for multispecieJ Fickian diffusion

We seek mappings

_ = X(_, _2, t), (1.a)

_b2 = Y(_b_, $2, t), (1.b)

where _bl and _b2 are standard independent Gaussian reference fields, and _bl(_,t)
and _b_(_,t) are governed by

OX 2

0t - D,[V _b_]c:,_,_2, (2.a)

OY
Ot - D2 [V2_k2]c..,_l,_.

It can be shown (Gao k O'Brien 1991a) that X and Y satisfy

cgX
- D1(L1 + L2)X,

&

OY _ D2(L1 + L2)Y,
0t

(2.b)



PDF method for turbulent scalar fields 227

b

10-'

I I I 1

e'_%Qao_q

,%

o slgma=1.487

Gaussian

ho,

'2*lff' , , ,
0 0.5

| I

_D

k
b

I

l

'*tD

I

Z 1!.5

FIGURE I(A). Normalized initialscalarPDF. 0",p(0)= 1.487(symbol) and stan-

dard Gaussian distribution(dashed line).

where

and Ai

The solutions of equation (3) are

X = 41raia----_{X(ui,u2,0)

o=.I
[oo d_ld,_2Y = J__ 4_blbl {Y(ul,u2,0)

exp[ (_'e-D'" -- =1)2
4hi

0 0 2

Li = -Ai_bi_-_i + 0_b--_.' (i = 1,2)

(i= 1,2)are the time scalesto be determined.

(_2e-D, r' -- u2) 2

4a] 1}' (4.a)

(ffie-D'' -- u2)21}, (4.b)
4b_
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where ri = f:)qdt (i = 1,2),

a_(t) = exp(-2D, n)dt and b_(t) = exp(-2D2ri)dt.

Clearly, solutions (4) preserve two important features of the scalar PDF: 1) if

the initial scalar fields are bounded, the subsequent fields remain bounded, and 2)

the leading terms in the solution relax to Gaussian distributions (Gao & O'Brien

1991a). It is also obvious that the above procedure can be applied to cases with
more scalar fields involved.

3._. Test of amplitude mapping against DNS results

For an initially double-delta PDF

P(¢,0) = _[6(¢) + 6(¢ - 1)], (5)
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diffusioncase.

Normalized scalar PDF at a later time (a¢ = 0.811) for pure

the mapping solution can be shown (Oao 1991a, Pope 1991) to be

X(¢, t) :- _ (1 + erf[¢e-_'/V/'2a(r)]), (6)

where r is the rescaled time and a2 = 1 - e -2_. Consequently, the conditional

dissipation rate of the scalar field E{(V_b) 21¢} : E(¢, t) can be derived for this

case (O'Brien, private communication) as

E(¢, t)/E(0.5, t) : exp{-2[err'(2¢ - 1)]2}. (_)

This result provides a perfect test case for the mapping closure because any error

that may be introduced by time rescaling has been ruled out. Direct numerical

simulations are performed for this specific case and the results are plotted in Figure

2. It shows that the mapping prediction are in excellent agreement with the DNS
data.
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3.$ Persistence of scalar PDF non- Gaussianity

An interesting observation can be made about Figure 2: the relative shape of
the conditional dissipation rate does not change with time. Recalling the fact that

the PDF of a homogeneous scalar field is a Gaussian distribution if and only if the

conditional dissipation rate E{(V_b)21_b} is independent of the scalar field _b (Gao
1991b), Figure 2 suggests that some of the non-Gaussian properties of a scalar field
persist during the scalar evolution process.

It is well known that scalar gradient fields become intermittent in turbulence and

their PDF's develop non-Gaussian tails (e.g. Monin & Yaglom 1975; Kraichnan

1990). However, it has been generally believed that the PDF of a homogeneous
scalar field relaxes to a Gaussian distribution. Figure 2 definitely casts some doubts
about this conclusion and needs to be explained.

The amplitude mapping solution can be written in an expansion form (Gao 1991b)

oo

x(¢,t) = (8)
rt=-O

where Hn is the Hermite function. It is obvious from (8) that in the course of time,

H1, which is a linear function of _, becomes the leading term. In this sense, the
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scalar PDF relaxes to a Gaussian distribution. However, the higher order terms

survive for large ¢ even at later times, which means that the tails of the scalar
PDF continue to be influenced by the initial and boundary conditions. Thus, non-

Gaussianity of a scalar field persists, most noticeably in the tails of its PDF and in

the high order moments of the scalar amplitude (Gao 1991b).

3._ Effect of turbulence on the evolution of aealar PDF'J

As has been pointed out earlier, an initially Gaussian scalar field develops a non-
Gaussian PDF under the action of turbulence. To understand this phenomenon,

let us start with an ensemble of scalar fields which has a Gaussian distribution.

Under the action of a certain velocity field, the scalar PDF remains Gaussian, but

the decaying rate of the scalar variance is determined by scalar diffusivity and the

advecting velocity field _7. i.e.

1 exp(- ¢2
Pc(¢,tl[_)- V/_-_a([_,t) 2a2-_-l, t) ),

where [v_ indicates a functional of velocity field and Pc is the PDF of scalar ¢
conditioned on a given _. Hence, we have

P(¢,t) = f Pc(C, t][_)P([_, t)d[_. (9)

Obviously, P(¢, t) given by (9) has longer tails than a Gaussian distribution (Gao

_t O'Brien 1991b).
The above analysis can be formulated by introducing J, which represents the

stretching produced by the velocity field. The J-analysis was first proposed by
Kraichnan, who used a heuristic non-stochastic J-model to explained the inter-

mittency (exponential-like tails in velocity gradient PDF) in Burgers' turbulence

(1990a, 1990b). For a passive scalar field, J is generally a random functional of the

advecting velocity field. Therefore, a stochastic J-model is needed for turbulent
scalar fields.

The mapping analysis can be readily carried out if we consider a one-dimensional

case with random uniform stretching velocity field u = a(t)z. For an initial Ganssian

scalar field, the mapping solution yields

¢ = Ce = Cexp(-D J'dt), (10)

where J measures the stretching of length scale by a certain velocity field and this

defines r. Therefore,
o¢

= o--;-= (11)

J is generally a functional of the velocity field and is random in time. A Stratonovich

type stochastic differential equation

dJ = -aJS dt + x/_JdW, (12)
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can be written for J if the stretching velocity field act ) is replaced by a white noise

process in time. Here at oc D, _ is determined by velocity stretching and Wt is a
standard Wiener process.

The Fokker-Planck equation for the PDF of J can be easily written as

N = at (J3P) + _ [J (JP)I. (13)

It is shown that (13) represents both limits of pure diffusion and of pure convection

cases (Gao et al. 1991). The stationary solution for (13) can also be easily written
8,8

----1 at

P(J) "" _ exp(-_-_J2). (14)

It should be noted that (14) does not apply as J _ 0, where unsteady effects remain

important. The scalar PDF P(_b), given _b _ _bexp(-cJ2), can be derived from (14)
ads

P(_b) = J PG(q_)P(J)dJ,

where Pa is the standard Gaussian distribution. A typical scalar PDF so obtained
is plotted in Figure 3. It shows similar non-Gaussian scalar PDF as those observed

in the DNS results (Figure I(B)).

The PDF of the scalar gradient _ can also be obtained from (11) and (14) as

1 exp(- l,_{/_/_). (15)P( I~N

This clearly demonstrates the exponential-like tails for the scalar gradient PDF,

similar to that derived by Kraichnan for velocity gradient in Burgers' turbulence

(1990a, 1990b). These tails indicate the expected intermittency of the scalar gra-

dient field and are widely observed in experiments and DNS. 643 DNS have been

conducted for both turbulent and pure diffusion cases. It is shown by the DNS that

while the scalar gradient remains a Gaussian distribution for the pure-diffusion case
(Figure 4(A)), the gradient of a turbulent scalar field clearly develops exponential-

like tails (Figure 4(B)).

$.5 Implementation of mapping for reacting flow_

A scheme has been developed for implementing the mapping closure model for

single-scalar turbulent reacting flows. The results are in excellent agreement with
the DNS data. For more details, see the report by L. Valifio in this volume.

4. Future plans

It is important to find practical schemes for implementing the available closure

models, especially for multispecies reacting cases. Three issues are involved.
First, the dimension of the problem increases with increasing species number,

thus making numerical calculations of multispecies PDF very difficult using the
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FIGURE 3. A typical PDF of a scalar field (initially Gaussian distributed) in a
turbulence field.

traditional finite-difference method (Pope 1990). The Monte-Carlo technique is

suggested to carry out such calculations. Preliminary results show this may be a

feasible technique.

Second, the time scale of scalar evolution process under turbulence advection

must be modeled for practical problems. More detailed studies will be conducted

to answer two questions: 1) How does turbulence affect the scalar evolution? and

2) Does representing the turbulent effect by a single time scale cause much error

in calculating terms that are of practical interest? Both of these questions concern

turbulent mixing theory, and the second question is related to the application of

the PDF approach to study of turbulent reacting flows. Our results show that

the low order statistics, which are of interest in practical problems, are not greatly
affected by the utail" effects. Thus, detailed interactions between velocity and scalar

fields, although theoretically of great interest, may not render substantial practical

improvement. If this is true, our implementation of the PDF approach will be much
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simpler.

Third, to deal with problems of turbulent combustion, the current research should

be extended to more general cases involving several scalar fields in non-homogeneous

turbulence. The key issue is to develop methods that are workable under available

resources at relatively low cost compared with the DNS method. The feasibility of

mapping closure to such complicated cases is not obvious and will be investigated.
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Monte- Carlo implementation of mapping
closures: application to chemical reacting flows

By Luis Valifio

1. Motivation and objectives

1.1 Motivation

A promising approach for solving chemical reacting turbulent flows is to use the

one-point probability density function (PDF) of the fields of interest (Lundgren,

1969). The main advantage of the PDF methods lies in the chemical terms being

closed (Dopazo & O'Brien, 1974; Pope, 1985). The PDF gives as much informa-
tion as the statistical moments of every order, but the price paid is a much more

complicated equation. In every point of space and time, we have to know a func-
tion of several variables, the PDF, instead of a handful of numbers representing the

statistical moments. In order to solve numerically such an equation with so many
variables, Monte-Carlo methods are most suitable and have allowed the solution of

flows of industrial interest (Pope, 1985; Haworth et al., 1990).

The major stumbling block in the PDF formulation is to close the diffusion term.

A new family of models, the mapping closures (Chen etal., 1989), seems to be very
promising overcoming this difficulty. Notice, however, that an external characteris-

tic dissipation time has to be provided. Monte-Carlo methods have been suggested

to implement the one-scalar mapping closure for diffusion in homogeneous turbu-

lence. But they have not been able to properly treat complex chemical reactions
because the mapping affects the whole equation and greatly complicates the chem-

ical terms, a defect shared by any other scheme in the multispecies case (Pope,

1991). A fractional step technique (Yanenko, 1971) is used to solve this problem.

1.It Objectives

The first objective of this research is to solve the PDF equation of one reacting

scalar in a constant density homogeneous turbulent field with a Monte-Carlo tech-

nique, using a mapping closure for the diffusion term. The second objective is to
solve a similar problem for the multispecies ease. The choice of a suitable method

to calculate the needed characteristic time-scale should follow the accomplishment

of these two objectives. Further extensions to more complex flows are also the aim
of this research.

2. Accomplishments

The single-scalar case has been solved and is explained in the rest of this section.

The multispecies case is still under development. Although there are some prelimi-
nary results for the latter case, more work is required before it can be published.
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t.1 Background

Let c(x, t) be a reacting scalar field that obeys the equation (for constant density)

Oc
+ u. vc= _v'c+ S(c), (1)

where u is the turbulent velocity field, s is the molecular diffusivity coefficient,

S(c) is a unimolecular chemical source term, and x and t denote the space and time
variables respectivdy. Both c and u are statistically homogeneous.

The equation for the scalar PDF Pc(C; t) is (Dopazo & O'Brien, 1974)

OP_ o 0
-_- -- -_ [(_ v_c j c = _) Pc] - _ [s(_) Pc], (2)

where _b stands for c in the probability space and ([ c = _b) means expected value
conditioned on c = _b. Notice that the chemical term is closed in this formulation,

while the mixing one remains open.

A monotonically increasing mapping X can be defined between a time indepen-

dent zero-mean one-variance isotropic multivariate Gaussian reference field c0(x)
and a surrogate scalar field c'(x, t):

where ([Vco[2/

et al., 1989)

c'(x,t) = x (c0(x);t). (3)

The mapping closure assumption identifies all the statistics of the surrogate and

real fields (Pope, 1991), i.e. (IVc*] z) would be equal to ([VcI' >.

It is straightforward to show that X obeys the equation (Chen et al., 1989)

Ox ,,/\[ ¢o ax 02X]
= \IVc°l_/[(cg)_b0 + _ j + S(X), (4)-N-

be relatedto _'lVcl=_usingthechain rule equation(a) (Chencan on
\ /

It should be noted that the scalar dissipation rate, ec _ (_lVc012_ or some related

quantity, as a characteristic variance dissipation time, has to be provided by some
other means, for example, using the standard k-e equations.

The relation between the PDF of the reference field Pco(_b0) and that of the real

one is (Chen et aL, 1989)

Pc(_b;t) = Pco(_b0) _,0_b0 / " (6)

We need to solve the mapping equation (4), and equation (6) will provide us

with the solution for Pc. Gao has solved the mapping equation analytically for
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non-reacting flows (Gao, 1991), but an analytical solution is not possible for the

general reacting case.

t._ Monte.Carlo implementation

A Monte-Carlo method which numerically solves equations (2) and (4) is de-

scribed next. The approach for obtaining Pc is slightly different from that employed

in the previous section. The fractional step method is applied to equation (2), solv-

ing first the chemical term, which is dosed, and then the mixing one using an inert
scalar mapping closure. Equation (6) will not be employed.

_._.I Chemical fractional step

The real scalar PDF Pc(_b; t) is represented by N stochastic particles with scalar

values c( i) ( t ),

1 _5 (_b - c(i)(t)) (7)Pc( b;t)=
i=I

The chemicalterm in equation(2) yieldsforc(i)the evolutionequation (Pope,

1985)

cc,)c')(t+zx )= +s At (8)
where the scalar subindex indicates the current fractional step, '1' in this case. The

new values obtained for the stochastic particles from the previous equation will be

the initial values for the next fractional step, i.e., in the next subsection we take

C(2)(1)(t) ---- C(1)(i)(t -1- At).

?,._. _ Mizing fractional step

In this fractional step the mixing term, closed by the mapping equations of the

section 1 (with the chemical term removed), is considered. First, X (¢0;t), the
mapping at the beginning of this fractional step, has to be set. To do so, a static

Ganssian reference field is represented. This is done by N sorted particles c_j)

obtained at the very beginning by a normalized Gaussian number generator. After

sorting the N particles c(2) (j) representing the real PDF (or surrogate PDF, both
fields have the same one-point probability density function), X is set as a discretized

function
ernin = X(-oo;t),

c(/)(t)=X(c(J);t), j---1,...,N, (9)

cmaz = X(ov; t),

where the '2' subindex is dropped for easier reading, cmaz and cmin are the upper
and lower bounds respectively for the real scalar field, and j indexes are (and will

be) used to indicate that particles are sorted.
We want to obtain X (_0;t + At), the mapping at the end of this fractional step,

that will allow us to obtain the new real field, by means of the equation (9) applied

at t + At.
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Using the same idea of Valifio et ai.(1991), we define a distribution function
F(¢0;0

F(¢0; t) = X(¢0; t) - _i.
cmaz -crain (10)

Its _b0 derivative, f(_b0;t), is a PDF, and from the previous equation,

OX(_bo;t) (_a, - cmi.)-'/(,_o;t) - _o (11)

The PDF f(¢0; t) can be represented (see equation (7)) by N particles cO)(t) that

axe obtained from N uniform distributed random particles v (j) by (Abramowitz,
1965)

c_'(t) = F-_(vu);t), j = 1,...,U, (12)

where discretized F is known at t from equations (9) and (10), and linear interpo-
lation can be used when needed.

We want to know cO)(t + At), the representation of f(_b0;t + At). From their
value, we will be able to determine X at t + At.

Taking ¢0 derivatives in equation (4) (with the chemical term removed), yields
(Valifio et al., 1991)

[Of ( _ 1 0 (_bo f) + . (13)= ,lVcol', <%'IO o O o'j
Equation (13) is the transport equation for a Langevin diffusion process. Notice that

keeping the chemical term in the equation would yield an impracticable nonlinear

integro-differential equation.

The values of c(J)(t + At) can be deduced now from the previous equation (Valifio
& Dopazo, 1991)-

+c(O(t + At)= c(p(t) + (C2o) _(i)(t), (14)

where _(i) is a normalized Gaussian variable, chosen independently at every time

step. The _-'ue of 0V°01') is deduced from the
//

provided external character{s-

tic time and equation (5), smoothing the mapping derivative obtained from the
discretized mapping by central differences.

Notice that F(_b0;t + At) is the integral of f(_b0;t + At), so it can be represented
as

1 N

F(_bo;t + At)= -_ Z H (_bo -cy(t + At)(/)),

i--1

(15)
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where H stands for the Heaviside function,

f o - < oH(z) 1 =_>oj"

241

From equations (10) and (15), we can get a set of discretized values of X at t+At

ernin = X(-oc; t + At),

+ (crnaz -cmin)v (j) = X (c(J)(t + At);t + At),

cmaz = X(oo; t + At).

j = 1,...,N, (16)

Finally, using equation (9),

we get the new values representing Pc(_b; t + At). Linear interpolation for X can
be used when needed.

?..3 Numerical results

A Monte-Carlo code has been developed following the previous ideas, its results

have been tested against different set of DNS data, for inert, linear reacting, and

second order reacting scalars and for different Daxnkh61er numbers (Da). Details

about the DNS can be found in the work by Valifio & Ga_ (1991).
In all cases, 10 s sample points have been taken, although 104 are enough to grasp

the low order moment statistics. Every time-step takes 1.5 seconds CPU time on a

Cray Y-MP, running on one processor. A two eddy-turnover time run requires about

1200 time-steps of size [100max(toq,w,)] -1, where _, and _q are characteristic
frequencies for scalar dissipation and reaction, respectively. The definitions of these

quantities are

Da - wq/,_c,
£

= (c,2//2'
O_q ._- --kc C n-I ,

where n equals to 1 (linear reaction) or 2 (second order reaction), kc is the reaction

constant and c' denotes the fluctuating part of the scalar. The definition and values

of the eddy-turnover time, l/u, used to non-dimensionalize the time, can be found

in the cited article by Valifio & Gao (1991).

To empirically prove the convergence of this numerical method, several runs of
the code have been made, randomly choosing in every time step the order of the

fractional steps, and the results compared to those obtained when prescribing this

order. The results were indistinguishable. It should also be remarked that Monte-

Carlo methods converge as 1IN (1/2) and that the CPU time requirement for the
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present implementation varies practically linearly with the number of stochastic

particles. For most practical purposes, 104 particles axe enough, and the CPU time

required per time-step in this case is 0.15 seconds.

Figures 1 to 10 show the comparisons between Monte-Carlo and DNS results.
Although the height of the PDF's peaks are slightly underpredicted when the mix-

ing is dominant (and hence the effects of the mapping closure), the agreement is
remarkable. The means and variances predicted reproduce the DN$ results. It is

remembered that the characteristic frequency was chosen to fit the data of the inert
scalar run, and it has the same value in a11 cases.

In the inert scalar case, the skewness and flatness predicted by the mapping clearly

tend to the Gaussian values, but the DNS data flatness overshoots the corresponding

Gaussian value of 3. Eswaran and Pope (1988) observed the same behavior in their
simulations, and they claimed that the flatness returns to 3 after a few more eddy-

turnover times. This overshooting cannot be reproduced by the mapping closure in

its current form (and, logically, by its Monte-Carlo implementation), which implies

an asymptotic relaxation without crossing the Ganssian values. A similar kind of

behavior can be observed in the reacting case. The Monte-Carlo calculation of
skewness shown in figure 9 indicates a slightly greater tendency to recover the zero

values than indicated by DNS data. The flatness evolutions predicted by the Monte-

Carlo simulations in figure 10 show a more steady path towards Gaussianity without
any kind of oscillation. A new mapping closure model now under development is

supposed to overcome this difficulty (Gao & Kraichnan, 1991).

1.2

0.8

 o.6
_a

0.4

0.2

0

-1.5

I

!

II fIt

It

Ii 4 I
I

!

I

I

- 1 -0.5 0 0.5 1 1.5

FIGURE 1. Comparison of the PDF's predicted by the Monte-Carlo mapping

closure (--e- tuff = 0.22 ; -_- tuff = 0.42 ; --_- tuff = 0.62) with those

obtained by Eswaran and Pope's DNS (-- tuff = 0.22; 0.42; 0.62).
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FIGURE 2. Comparison of the PDF's predicted by the Monte-Carlo mapping
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FIGURE 3. Comparison of PDF's predicted by the Monte-Carlo mapping closure

for three early times (-_- tu/l = 0.06 ; -_- tu/l = 0.19 ; --_- tu/l = 0.25) with

those obtained by DNS (_ full = 0.06; 0.19; 0.25). Da = 0.275.
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FIGURE 5. Comparison of PDF's predicted by the Monte-Carlo mapping closure

for three early times (-_- tu/l = 0.06 ; -_- tu/l = 0.19 ; -_- tu/l : 0.25) with
those obtained by DNS (_ tu/l : 0.06 ; 0.19 ; 0.25). Da : 2.75.
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FIGURE 6. Comparison of PDF's predicted by the Monte-Carlo mapping closure

for three later times (-_- tu/l = 0.31 ; -e- tu/l = 0.37 ; --_- tu/l = 0.55) with

those obtained by DNS (-- tu/1 = 0.31 ; 0.37 ; 0.55). Da = 2.75.
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FIGURE 7. Comparison of the scalar mean evolutions predicted by the Monte-

Carlo mapping closure for different reactions (--o- none ; --o- linear Da=5.5 ;
--o- second order Da=0.275 ; --a- second order Da=2.75) and those obtained

by DNS data (-- all cases).
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FIGURE 8. Comparison of the scalar variance evolutions predicted by the Monte-
Carlo mapping closure and those obtained by DNS. Same cases as figure 7.
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FIGURE 10. Comparison of the scalar flatness evolutions predicted by the Monte-

Carlo mapping closure and those obtained by DNS. Same cases as figure 9.

_._ Summary

A fractional-step Monte-Carlo technique has been used to predict the evolution of

a single-scalar PDF with chemical reaction, using a mapping closure for single inert
scalar diffusion to solve the fractional-step corresponding to the mixing term. A code

has been developed and its numerical results (mean, variance, skewness, flatness,

and PDF) have been tested against DNS data obtained using modified versions

of Rogsllo's code (Eswaran & Pope, 1988; Gao, 1990). The needed characteristic
time was chosen to fit the variance of the non-reacting case. Comparisons have

been done for the double delta initial PDF case and different Damkh_ler numbers

in forced homogeneous turbulence. The agreement is remarkabie. An interesting

point is the difference between the steady tendency to Gaussianity shown by the

mapping predictions and the more erratic shown by the DNS. The CPU times
needed have been high, but still reasonable, showing the computational feasibility

of this technique.

3. Future plans

The extension of this methodology to several scalar PDF might be possible, al-

though the increasing dimensionality of the mappings with the number of scalars

(Pope, 1991; Gao & O'Brien, 1991) will greatly complicate the implementation. A

simpler multispecies diffusion closure based on the single-scalar mapping closure is
under development. This closure will make the problem much easier. The next step

will be the extension to homogeneous cases allowing mean gradients. Finally, a k -
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model or the two particles Durbin's Lagrangian model may provide the character-

istic time or, alternatively, the new mapping by Gao and Kraichnan (1991) may be
considered.
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Flame ignition in a premixed turbulent flow

By T. J. Poinsot _

A preliminary study of the ignition of a premixed flame front in a two-dimensional

turbulent flow is presented. Flame ignition is studied using full numerical simulation
including heat release, variable fluid properties, and one-step Arrhenius chemistry.

The effects of turbulence on the flame growth as well as the effects of the flame

on the surrounding turbulence are described. It is shown that, if combustion is

successfully initiated, the initial growth is always laminar-like mainly because of

dilatation effects through the flame front. Later, the turbulent fluctuations begin to

wrinkle the flame and transition to turbulent propagation takes place. The influence

of numerical parameters such as boundary and initial conditions is considered. The

effect of Lewis number is evidenced by comparing the growth of two flames with
the same flame speeds in the same turbulence but with different Lewis numbers

(Le = 1.2 and Le = 0.53)

1. Background and objectives

Flame ignition in most industrial devices takes place in a turbulent situation

(Hamai et al. (1986), Pischinger and Heywood (1990), Baritaud (1987)). Energy is

deposited in the turbulent gas using a spark (in piston engines, for example), chem-
ical reaction begins when the temperature reaches a sufficient level and a flame

kernel is initiated. The subsequent growth (or death) of this kernel is the central

question of ignition studies. Studies of minimum energy and times for ignition

have been performed in laminar flows using asymptotic methods (Champion et al.

(1986), Champion et al. (1988)), numerical methods (Frendi and Sibulkin (1990),
Ko and Arpaci (1991), Maly and Vogel (1978), Maly (1981), Tromans and Furzeland

(1986), Sloane (1990)) and experiments (Ko et ai. (1991), Champion et al. (1986),

Sloane (1990)). Although much is known about ignition processes in laminar flows,
the application of these studies to practical cases is limited by the unknown effects

of turbulence on these processes. Only a few results on ignition in turbulent flowJ

are available. Research scientists working in the field of reciprocating engines have

been quite active in this field (Baritaud (1987), Pischinger and Heywood (1990),

Boston et al. (1984)) but the complexity of flow fields and the difficulty of perform-

ing measurements inside piston engines makes some of the relevant information

difficult to extract from these studies (the turbulence characteristics, for example,

are complex and difficult to estimate). As indicated by Pischinger and Heywood

(1990), few multi-dimensional models simulating spark-generated flame ignition are

available today. Models based on stochastic approaches (Pope and Cheng (1986))

or on flame wrinkling predictions (Thomas (1986), Mantel and Borghi (1991)) have

1 Permanent add¢ess: C.N.R.S., Ecole Centrale de Paris C L_ q_'_ "_

.___'0 .tNffPff_0_:,'dtY _f._ll PRECEDING PAGE BLAr,4K NOi" FiLMED



252 T. J. PoinJot

been proposed but fundamental information to test these models is lacking in most
cases. The goal of this study is to consider feasability and efficiency of a full Direct

Numerical Simulation to provide precise data on flame growth in a turbulent flow.

In the present study, the modeled system includes heat release, variable fluid
properties, and simple chemistry in two-dimensional turbulence. While it is rec-
ognized that two-dimensional turbulence differs from three-dimensional turbulence

(e.g., Herring et al. (1974), Lesieur (1987)), the response of the flame front during
its growth in a two-dimensional computation should be generic, even if detailed sta-

tistical correlations (especially of small-scale quantities) differ quantitatively from

what would be found in three dimensions. Restricting the simulations to two di-

mensions permits a much wider dynamic range of scales to be computed, so that, for

example, higher turbulence Reynolds numbers can be simulated while still resolving
the flame structure (Haworth and Poinsot (1990)). The present results are also used

as a tool to develop techniques which will be utilized in three-dimensional compu-
tations. The effects of energy deposition, the influence of boundary conditions on

turbulence, the effects of Lewis number may be assessed first in a two-dimensional
case before implementation in a three-dimensional situation.

We will present first the equations which are solved and the configuration (Sec-
tion 2). A typical example of ignition will be given in Section 3. Numerical effects

will be considered in Section 4. Because we study compressible flows with strong di-
latation, the boundary conditions must allow acoustic waves as weU as flow to leave

the computation domain. Adequate boundary conditions to treat this problem will
be discussed and tested in Section 4.1. The influence of initial turbulence condi-
tions will be discussed in Section 4.2. The effects of thermodiffusive instabilities

(controlled by the Lewis number Le) during ignition are tested in Section 5.

2. Equations and configuration

The basic equations and the numerical algorithm used in this study are described

in Poinsot et al. (1991). We consider a compressible viscous reacting flow. The
chemical reaction is represented by a single-step mechanism,

R (reactants) --, P (products),

and the reaction rate _bR is expressed as,

(1)

_bR:BpYR exp (---_) . (2)

This can be interpretedas a binary reactionwhere one of the reactants(YR) is

alwaysdeficient.Itisconvenientto followWilliams (1988)and castthisexpression

in the form,

_bR = BpYRexp 1-_((f_ O) " (3)

HereO is thereducedtemperature,O= (T - T1)/(T2- T1),whereT1is thefresh
gas temperature and T2 is the adiabatic flame temperature for unity Lewis number.
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The activation energy is T_, and the coefficients B, a, and f_ are, respectively, the

reduced pre--exponential factor, the temperature factor and the reduced activation

energy,

B=Bexp(-B/a), a=(T2-T1)/T2, and _=aT6/T_. (4)

The mass fraction of the reactants YR may be conveniently nondimensionalized b_

the initial mass fraction of reactants Y_ in the fresh gases, Y = YR/Y_, so that Y

varies from 1 in the fresh gases to 0 in the burnt gases. Fluid properties follow the

equations of state,

p = p1(pTI/p1T), = m(7/71)b,

Le = )_/pDcp = constant, Pr = pcp/)t = constant, (5)

where p, _, and D are molecular diffusivities of momentum, internal energy, and

species, respectively. Here a subscript 1 refers to reference properties in the fresh

gases.
Using these assumptions and a Cartesian frame of reference, the conservation

equations for compressible flows are solved using a high-order finite difference
scheme. The numerical accuracy is sixth-order in space and third-order in time

(Lele (1989)). Boundary conditions are specified using the NSCBC method (Poinsot

and Lele (1991)).
The calculations are initialized with reactants everywhere in the square domain.

For the turbulent cases, the initial velocity field (turbulence spectrum) is specified

at t = 0: the system is then allowed to evolve in time. After a certain delay tdet,_

(to let turbulence evolve to a meaningful spectrum), combustion is initiated in the

middle of the computation box. This is done by adding a source term in the energy

equation. The form of this term is the following:

r 2
(e)

where r is the distance of a given point to the center of the box and R is the size

of the simulated spark. Q is a constant. This source term is maintained during a

time tig,_itio,_ and then switched off.

For a fixed chemistry model, the control parameters in this simulation are:
- ratio of initial RMS turbulence intensity u _ to the undisturbed laminar flame

speed s_;
- ratio of initial turbulence integral length scale to laminar flame thickness 5:2. Two

integral length scales may be used : the two-point correlation length 11 or a length
defined from the turbulence characteristics: 12 = 0.4k(_/2)/_ (the kinetic energy in

these 2D cases is k = u'2);

- ratio of spark duration tie,,it_o,, to typical flame time tlt_,,,e ;
- ratio of spark size R to typical flame thickness 6t2 and

- ratio of spark power Q deposition to typical flame power Qlz_,,,_.
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We do not scale the spark characteristics with critical values obtained from asymp-

totic studies (Champion et al. (1986), Champion et al. (1988)) because these values
might not be relevant for turbulent cases. The flame thickness is estimated by

The flame time is

(7)

(8)

Note that _z2 is close to the reaction zone thickness and therefore smaller than the

real thermal thickness 611 defined by 5zl = (T2 - T_)/(dT/dz),..ffi. It is used here
because of simplicity and because many authors use it instead of 511.

The flame power per unit volume is defined by Qfl_,_e = pyreosCp(T2-T1 )/t/t_m_.
The initial spectrum is given by two parameters: the RMS velocity u' and the

length scale of the most energetic vortices Li:

E(i¢) = C(I¢/l¢,)4 ezp(--2(t¢/I¢,) 2) (9)

where i¢ is the wave number and tci corresponds to the most intense wave number, i.e.

_i -- 2_r/Li. The constant C is chosen to satisfy the constraint k : u _2 : fo E(tc)&¢

and is C = 32/3V/_ u'2/_i.

The values of these parameters for some of the runs performed are given in Table I.

Table I. Turbulence and flame parameters for ignition problems.

(L is the unit length in the code given by the Reynolds number Re = Lc/v)

(c is the sound speed and v the kinematic viscosity)

4---

Run

Turbulence data ---* _ Flame data

L,/L t,/L z2/ L Lewis

V1
V2

V3

V4

V5

V6

V7

V8
V9

VIO

VL1

VL2

W4

9 0.I 0.7 0.24 0.4 0.01080.237 0.046 1.2

9 0.I 0.7 0.24 0.4 0.01080.237 0.046 1.2

9 0.I 0.7 0.24 0.4 0.01080.237 0,046 1.2

9 0.05 0.7 0.24 0.2 0.0108 0.237 0.046 1.2

9 0.05 1.4 0.48 0.80 0.0108 0.237 0.046 1.2

9 0,1 1.4 0.48 1.61 0.0108 0.237 0.046 1.2

9 0.05 2.1 0.76 0.9 0.0108 0.237 0.046 1.2

9 0.1 0.7 0.24 0.4 0.0108 0.237 0.046 1.2

9 0.1 0.7 0.24 0.4 0.0108 0.237 0.046 1.2

9 0.1 0.7 0.24 0.4 0.0108 0.237 0.046 1.2
14 0.1 2.1 0.71 3.6 0.0108 0,237 0.046 1.2

14 0.1 2.8 0.98 6.1 0.0108 0.237 0.046 1.2

9 0.1 0.7 0.24 0.4 0.0090 0.285 0.055 0.53
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Table II contains the reduced parameters and the ignition characteristics. The

length ratios Li/$z2 and 11/Sn correspond to maximum and minimum values of a

ratio of integral turbulent scale to chemical scale. The large difference between
these two values shows how careful one must be when dealing with comparisons

between experiment and computation, for example. It must also be noted that all

integral lengths grow rapidly when the computation proceeds so that ratios between

turbulent and chemical lengths given in Table II are minimum values which increase

during computation by a factor of 3 to 4. In the same way, two Reynolds numbers

have been reported in Table II: one is based on the two-point integral scale 11 and
the other one on the most energetic scale Li in the initial spectrum. Because the

initial turbulence is not in equilibrium, large differences may be found between both
estimates and one has to be careful about which number is actually used to compare

with experimental data.

The Damkohler number reported in Table II is defined as Da = _'t_rb/rche,,_ =

Other runs made with different initial spectra have been made and are

available at CTR but not reported here. Typical grids contain 257 by 257 or 385

by 385 points.

Table II. Reduced parameters and ignition characteristics for ignition problems.

V1 9.26 15.2 8.69 1.01 1.68 0.94 140 48 0.5 3.5

V2 9.26 15.2 8.69 1.01 1.68 0.94 140 48 0.5 4.5

V3 9.26 15.2 8.69 1.01 1.68 0.94 140 48 0.5 5.5

V4 4.63 15.2 4.34 1.01 1.68 0.93 70 24 0.5 5.5
V5 4.63 30.4 17.4 2.02 3.38 3.84 140 48 0.5 5.5

V6 9.26 30.4 35. 2.02 6.79 3.77 280 96 0.5 5.5

V7 4.63 45.6 19.6 3.21 3.80 4.23 210 76 0.5 5.5

V8 9.26 15.2 8.69 1.01 1.68 0.94 140 48 0.5 5.5

V9 9.26 15.2 8.69 1.01 1.68 0.94 140 48 0.5 5.5

VIO 9.26 15.2 8.69 1.01 1.68 0.94 140 48 0.5 5.5

VL1 9.26 45.6 78.3 3.12 15.2 8.46 210 142 0.5 5.5
" VL2 9.26 60.9 129.8 4.13 25.7 14. 420 196 0.5 5.5!
-' W4 11.1 12.7 7.27 0.84 1,40 0,66 140 48 0.5 5.5
i

Parameters which were the same for allruns are summarized in Table III (L is

the unitlengthin the code given by the Reynolds number based on sound speed :

Re = Lc/v). For allthe presentruns,the ignitiondelaytdCza_was zero(seeSection

4.1).
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Table III. Fixed parameters for all simulations.

cL/v _ _ A b Pr R/L td_l._

2000 0.75 8.00 146. 0.76 0.75 0.08 0.

Q

(a) Temperature

_ _o_._._?__Z-_, _ ___._ ,._

o _

(c) Mach number

-_,1"4_"-_:. _ -T:_._._.' _: R_._ '-::.:

(b) Vorticity

Ignition in a premixed gas.
Ignition time�Flame time = 0.5

Time i Flame time = 0.4

FIGURE 1. Ignition example for Le = 1.2: t/t/_,,_e = 0.4

3. Example of DNS of flame initiation

Typical contours of temperature, Mach number and vorticity are shown in Fig-

ures 1, 2, 3 and 4 for a test case (Run V4 in Tables I and II). Figures 1 to 4

correspond respectively to t/t/_,,_e = 0.4, 0.8, 4 and 6. In terms of initial turn-over
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times, this means t/tintegr, t = u't/12 = 0.34, 0.68, 3.44 and 5.28. The ignition

delay tdelait is 0 and the ignition time tis,_itl,,_ is 0.Stj, l,,_e. The ignition power is

O =

(a) Temperature

U o r'''_ • " _"- k.l_

(c) Mach number

(b) Vorticity

Ignition in a premixed gas.
Ignition time/Flame time = 0.5

Time IFlame time = 0.8

FIGURE 2. Ignition example for Le = 1.2: t/tyl.m_ = 0.8

The spark creates a flame which grows first in a laminar-like fashion (Figure 1

and 2 ) and later transitions to a turbulent flame (Fig. 3 and 4). This result
confirms experimental findings which describe the initial growth of the flame as an

essentially laminar process (Baritand (1989)). However, it is important to realize
that this initial growth is controlled first by the large energy deposited by the spark

which feeds the temperature field and helps it grow beyond the critical size needed

for self-sustaining reaction to occur.
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During the first instants, a weak shock wave is initiated by the ignition and may

be seen on the Mach number fields in Figures 1 and 2. The velocity difference due
to dilatation through the flame front is also visible on Fig. 1 but may not be seen
at later times because turbulent fluctuations overcome it. This confirms that the

initial growth of the flame is controlled by its own dilatation which is always larger

than the turbulent fluctuations and isolates the flame core from the surrounding
turbulence. Later, when the flame gets larger, it becomes more difficult for the

laminar propagation to overcome turbulent fluctuations and transition to turbulent

propagation occurs. This may be also characterized in terms of flame stretch as
shown in Section 5.

(a) Temperature

o v

,

(c) Mach number

, .,_. _.,_,. _. - --....,-_...

(b) Vorticity

Ignition in a premixed gas.
Ignition time�Flame time = 0.5

Time / Flame time = 4.

FIGURE 3. Ignition example for Le = 1.2: t/tfla_e : 4.
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(a) Temperature

<

C

(c) Mach number

,-_ "'" _ k.J 0 _ * °"

• .... ..-

(b) Vorticity

Ignition in a premixed gas.
Ignition time/Flame time = 0.5

Time / Flame time = 6.

FIGURE 4. Ignition example for Le = 1.2: t/ty_e,ne = 6.

The effect of the flame on turbulence is strong: vorticity is reduced to low levels

inside the burnt gases. This is due both to dilatation (the density is four times

smaller in the burnt core) and large viscosity (the kinematic viscosity is about 10
times larger in the burnt core than in the fresh gases).

4. Numerical tests

4.1. Effecta of boundary eondition_

Initial turbulent fluctuations are imposed using a specified spectrum (Lee et al.

(1991)). These initial fluctuations are usually periodic over the two computation
directions and constitute the initial velocity field.
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One of the main problems of the present simulation is the impossibility of main-

raining periodicity during the computation and therefore of using periodic bound-

ary conditions. Because of dilatation, combustion creates an outward mean motion

which pushes fresh gases out of the computation domain and prohibits any period-

icity assumption. At first sight there is some advantage to this situation because

most of the velocities will correspond to flow leaving the computation box (a case

which is easier to treat, see Poinsot and Lele (1991)). However, in the turbulent

case, speeds corresponding to flow entering the domain may also be generated and

maintained for a long time even though combustion takes place in the box. In

this case, we clearly lack information to update these velocities on all sides of the
domain.

Different tests of the boundary conditions performances were performed in the

case of decaying turbulence without combustion. This is a more difficult test because

no dilatation is present to induce outgoing movement near the boundaries. If the

standard non-reflecting NSCBC method is used for all boundaries and turbulent

fluctuations are imposed everywhere in the domain, some non-physical results may

be obtained: large ingoing velocities are maintained on boundaries for long times

so that the RMS velocity decreases but then increases again. To overcome this
difficulty, the initial turbulent fluctuations may be imposed only in the center of

the box and clipped near the boundaries using a spatial filter. For this study the

following filter was used:

f(z,y) = [cos(Tr(z - X,,,.f/2)/Xm..) * cos(_r(y - Y,_.=/2)/Ym.z)] °'2 (10)

where the computation domain goes from 0 to X,_.z for z and from 0 to Y,_ffi for

y.

The efficiency of the NSCBC boundary conditions combined with the clipping

of initial turbulence near the boundaries may be assessed by comparing decaying

turbulence in a perfectly periodic domain (with periodic boundary conditions and

no initial clipping) with decaying turbulence in a non periodic domain (with NSCBC

conditions and initial clipping). This is done in Fig. 5 for an initial RMS velocity

u'/c = 0.1 (c is the sound speed) and a reference length scale Li/L -- 0.7 (L is the

unit length in the code given by the Reynolds number Re = Lc/u). The box size is

9 by 9 and the grid is 257 by257.

Figure 5 presents time variations of the kinetic turbulent energy k and dissipation

e. Full symbols correspond to the NSCBC case while hollow symbols designate the

perfectly periodic case. An integral turbulent time _" is defined as

_" = cokl_ = 121V_, (11)

where co is a constant depending on the spectrum shape and was fixed to 0.4 here.

The solid line and the dashed line indicate the prediction of a simple model for

k/k0 and e/e0 based on the classical equations for decaying turbulence (k0 and t0

are the initial values of k and _, "to is the initial integral time _'o = coko/eo):

Ok O_ _2

= -, and "_" = -C2 "-_'. (12)
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0.0 m

I 1 I I I

0 2 4 6 8

Time / Initial Integral Time

FIGURE 5. Variation of the turbulent kinetic energy k and of the dissipation e for
cold flow computations (Comparison between a periodic case, a NSCBC computa-

tion with clipping and the analytical solution).

These equations may be solved easily to obtain:

k
(1 + co(C= 1)---t ) -'/(c'-')

k0 7"0
(13)

--' = (1 + c0(C2- 1)k) -e'/¢c'-'>, (14)
E0 1-0

1- = 1 + c0(C2 - 1) k. (15)
7"0 t'0

The integral turbulent time 1"is quite important for turbulent combustion mod-

eling because it controls the characteristic time for flame stretching (Cant and Bray

(1988), Menevean and Poinsot (1991), Mantel and Borghi (1991)). Figure 6 shows

the variations of r with time for the periodic case (empty squares), the NSCBC

case (full squares) and the theoretical function given by Eq. (15) (solid line).
Figures 5 and 6 show that the non periodic case computed with the NSCBC

method and a clipping of turbulence near boundaries behave like the periodic case
and that both cases behave like the theoretical solutions when a value of 2.5 is taken

for the constant C2. Although this value is higher than the commonly used value

C2 = 1.92, it is still quite reasonable for two-dimensional turbulence initialized with
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J [] Periodiccase i •
I • Non periodicwithNSCBCi •
[_ Analytical solution ]
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0 2 4 6 8

Time / Initial Integral Time

FIGURE 6. Variation of the turbulent integral time for cold flow computations
(Comparison between a periodic case, a NSCBC computation with clipping and the
analytical solution).

random conditions. Tests indicate that such an agreement may be obtained only

when the integral length is not too large. For reference lengths Li larger than 0.2
times the box size, turbulence evolves correctly for two or three turnover times but

drifts later to a non realistic behavior. When Li is smaller than 0.2 times the box

size, the evolution of turbulence is satisfactory and the values of C2 obtained for

different runs vary between 2.4 and 3. The turbulent length scale Is = cokS/S/E is
plotted in Fig. 7.

The fact that turbulence behaved correctly immediately after the beginning of

the runs lead us to start flame ignition right away and therefore to take tdelav = 0 in

this first study (Because of the flnit_ time required for ignition, the flame actually
starts burning only after a time which is of the order of a turnover time in most

cases).

_._. Effect_ of initial turbulence condition_

To produce meaningful comparisons between DNS results, which correspond to

one individual flow realization and model results, which predict values averaged over
a large number of flow realizations, the question of repeatability of DNS results must

be considered. It was addressed here by running the same ignition problem with

different initial seeds. It was found that most runs behaved the same way, providing
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"1 I n Periodiccase I i1"
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0 2 4 6 8

Time / Initial Integral Time

FIGURE 7. Variation of the turbulent length scale with time for cold flow compu-

tations (Comparison between a periodic case, a NSCBC computation with clipping

and the analytical solution).

a scatter of only 10 percent in terms of mean reaction rate, except for cases where a

'catastrophic ' event would occur. Figure 8 shows the variations of the total reaction

rate for runs V4,V8,V9 and V10 performed with uP/c = 0.1 and Li/L = 0.7 (see

Tables I and II).
The total reaction rate is plotted in terms of an 'equivalent flame radius' which

is the radius of a circular laminar flame moving at speed s_, and having the same

reaction rate as the turbulent flame. This radius integrates effects of flame wrinkling
as well as local flame speed variations.

Case V10 is characterized by the occurence of a catastrophic event for the flame

growth after two turn-over times: this event corresponds to the separation of a

burnt pocket from the main bulk and to the subsequent extinction of this pocket

as shown in Fig. 9. After this event the growth of the flame resumes with a slope
close to the other cases. Note that in other simulations pockets of burnt gases are

formed but do not quench at later times: there is no apparent rule governing the

quenching of these pockets (except for the evident limit of being larger than the
critical ignition size).

Altogether, it appears that the four runs shown in Fig. 8 are quite dose even

though case V10 is propably not representative of the mean evolution. This suggests

that only a few runs on a given case with different random initial conditions should
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...... ..........run V3

--- run V8
run V9

..... Laminar growth
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FIGURE 8. Comparison between four runs with different random initial conditions

(Runs V4, V8,V9 and V10).

provide a meaningful average evolution.

5 Effects of Lewis number and molecular effects

5.1 Flame Jtretehing during laminar kernel growth

Contrary to classical flame propagation, turbulent and laminar ignition processes

axe dominated (at least initially) by a stretch which is generated by the growth of

the flame itself. Flame stretch can be expressed as (Candel and Poinsot (1990)):

1 0E

s = _-, (16)
where _ is the flame surface.

In the case of a two-dimensional laminar flame ignited at a point source, the

flame first starts and after the initial ignition process grows at a constant speed

(Champion et al. (1986)). This speed is the flame displacement speed and is given

0_ (Poinsot et al. (199i))by the growth of the flame radius

Or T2
0t - T, sL, (17)

where 8L is the consumption speed of the flame so that its surface Z_ = 27rr is

characterized by a stretch:

S - 1 Or T2 sL/r,; _ - _ (18)
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w

(a) t = 1.3 * Initial turnover timeJ
(b) t = 2 * Initial turnover time

r

(c) t = 2.7 * Initial turnover time (d) t = 4.6 * Initial turnover time

FIGURE 9. Example of 'catastrophic' event during flame growth: a pocket of burnt
gases is produced and quenched.

This laminar stretch is large when the flame radius is small and one of its effects

is to modify the consumption speed sL (which is sensitive to stretch when the

Lewis number is not unity). The flame speed SL increases for positive stretch when
Lewis < 1 and decreases when Lewis > 1. The effects of stretch during laminar

flame growth are demonstrated in Fig. 10 and 11 for two flames with Lewis : 1.2
and Lewis = 0.53.

Figure 10a and lla present variations of the total reaction rate (normalized as an

equivalent radius) and of the flame radius r. Figure 10b and llb show the variations

of the consumption speed (normalized by S° ) and of the flame stretch normalized

by the critical stretch s°L/6_l.
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FIGURE 10B. Consumption speed sL/S°L and flame stretch S/(S°L/i_tl) for the

Lewis = 1.2 flame (Laminar case)

The Lewis = 0.53 flame grows much faster (Fig. 11) than the Lewis = 1.2 flame

(Fig. 10). The Lewis = 0.53 flame is characterized by a consumption flame speed

which remains always larger than s_ (Fig. llb) because of stretch effects . In the

case of the Lewis = 1.2 flame, the initial ignition phase leads to large values of the
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FIGURE llB. Consumption speed s_,/s_ and flame stretch 5'/(s_/6zl) for the

Lewis : 0.53 flame (Laminar case).

consumption speed but as the flame relaxes to the structure of a stretched laminar

flame, this quantity becomes less than the unstretched laminar flame speed s °. For

both flames, consumption speeds eventually relax to their unstretched values when

the flame radius r is large enough and the reduced stretch decrease to values less
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(a) Lewis = 1.2- stable (b) Lewis = 0.53 - unstable

FIGURE 12. Temperature field at the same instant (t = 4 initial turn-over times)
for run V8 (Lewis = 1.2) and run W4 (Lewis = 0.53)

than unity. Note the characteristic behavior of the Lewis = 0.53 flame: if it grows

fast, it experiences a larger stretch and therefore a larger consumption speed leading
to a faster growth and so on.

This simple result suggests that in turbulent cases, important quantities will be

(1) the laminar stretch S defined above and created by the flame itself and (2) the
turbulent stretch imposed on the flame by turbulent fluctuations.

Initially, the laminar stretch is always large and dominates the turbulent stretch.

Later, if turbulence does not decay too fast (which is always the case in practical

situations), the turbulent stretch overcomes the laminar stretch (which decreases
like 1/r) and leads to transition to turbulent propagation. However, the effects of

turbulence are multiplied by another mechanism: the wrinklings created by vortices
on the flame front trigger natural instabilities for Lewis = 0.53 and enhance the

flame growth by creating large flame folding as shown in the next section.

5._ ThermodiffuJive instabilities during turbulent flame growth

The existence of flame instabilities for small Lewis numbers has been known

for a long time (Williams (1988)). For Lewis numbers less than unity, differential
diffusion between heat and species leads to the formation of cells on flame fronts:

lower burning rate are found for elements concave towards reactants; higher burning
rates for elements concave towards products. Therefore, flame deformations tend

to increase-and such flames become highly convoluted.

Although the influence of Lewis number is typically a molecular effect, it has been
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FIGURE 13. Evolution of the equivalent radius (normalized total reaction rate)

for run V8 (Lewis = 1.2) and run W4 (Lewis = 0.53). Turbulent ignition.

evidenced in many high-Reynolds number turbulent flames including experiments

(Wu et al. (1991)) or two-dimensional direct simulations (Haworth and Poinsot

(1991)). DNS performed in three or two-dimensional low Reynolds number cases

(Ashurst et al. (1987), Rutland and Trouve (1990)) have also produced the same

results. Flame ignition is especially sensitive to cellular instabilities because the

flame kernel is continuously submitted to stretch (even in a laminar case, see Eq.

(18)). In laminar flows, this leads to the natural formation of spectacular flame

structures as shown by Sivashinsky (1977). It was therefore interesting to check

whether our simulations would indicate any influence of this essentially molecular

mechanism for a turbulent case.

The comparison between runs V8 (Lewis =1.2) and W4 (Lewis=0.53) is given in

Fig. 12. The initial turbulent fields are the same (see Table I and II).

The turbulent flame with Lewis=0.53 grows much faster than the flame with
Lewis =1.2. The variation of the total reaction rate vs time for the two cases is

given in Fig. 13. The turbulent flame speed (which is the slope of the total reaction

rate curve vs time) for run W4 is about 4 times larger than for run V4. Clearly,

molecular effects have a very important role to play during ignition and models

should account for this effect even at large Reynolds numbers.

6. Summary and conclusions

A Direct Numerical Simulation of flame ignition in a turbulent premixed gas

has been described. The formulation is two-dlmensional, includes heat release,

compressibility, finite rate chemistry and high activation energy Arrhenlus law for

chemistry. Flame is initiated by locally depositing energy in a flow submitted to
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decaying turbulence. The influence of numerical parameters such as boundary con-

ditions or initiaJization of turbulence was determined. Results suggest that DNS

can be used to obtain information on shock wave formation at ignition, flame struc-

ture, tremsition from laminar to turbulent flame propagation, effects of stretch and

of molecular effects. It was shown that thermo-diffusive instabilities characterizing

lazninar flames with Lewis numbers less than unity also appear on turbulent flames

and significantly enhance flame growth.
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Simulation of flame-turbulence

interactions in premixed combustion

By A. Trouv_

1. Motivation and objectives

Turbulent combustion is a challenging practical problem where fluld-mechanics

and chemistry are strongly coupled. The general motivation of this work is to in-

crease our basic understanding of flame-flow interactions under turbulent conditions.

The approach herein consists of applying Direct Numerical Simulation (DNS) meth-
ods to turbulent combustion. It is a continuation of previous work by Dr. Poinsot

(1989, 1990, 1991) and the author (Trouv_ 1990).

The objectives in 1991 were twofold:

• investigate the flamelet models used in engineering calculations of turbulent com-

bustion. More specifically, the objective is to study the combined effects of flame
curvature and hydrodynamic straining on the structure of premixed turbulent flames

with non-unity Lewis number.

• develop a new three-dimensional data base of premixed flames embedded in a

variety of basic turbulent flow fields.

1.1 The Jtructure of p_mized turbulent flames

Premixed turbulent combustion is the propagation of a chemical reaction zone

through a turbulent, molecularly mixed region of fuel and oxidizer. The turbulent

flame is characterized by the topology of the region in which reaction occurs: front,

pockets, or large volumes. Depending on the relative values of various chemical

and turbulence scales, dimensional analysis reveals a' range of premixed combustion
modes progressing from flamelets to distributed reaction zones to well-stirred re-

actors (see for example Poinsot et al. 1990). These modes correspond to different
topologies of the reaction zone and require different approaches for both under-

standing and modeling.

Experimental as well as theoretical evidence suggests that many technologically

important flows occur in the flamelet burning mode. Flamelet combustion corre-

sponds to chemical reaction occurring at fast time scales and short length scales
relative to the turbulence. In this situation, the flame is confined to relatively thin

layers within the turbulent flow field.

In the flamelet regime, much of the interaction between combustion and turbu-

lence is decoupled, and the framework for modeling is, therefore, greatly simplified.

It is then convenient to describe the flame-flow interactions in terms of two quanti-

ties: the total flame front surface area and the local flame structure. The principle
effect of turbulence is for the fluctuating velocity field to wrinkle the flame and

greatly increase its surface area. This phenomenon accounts for most of the increase
in the overall burning rate due to turbulence. AdditionaLly, turbulent motions can
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alter the local flame structure. This secondary effect accounts for local variations of

the reaction rate along the flame surface. Under certain conditions, these variations

can become critical and lea_i to partial or total quenching of the flame.

Laminar flame theory indicates that the local flame structure is modified by flow

divergence and flame front curvature. Flow divergence is usually characterized by

the hydrodynamic strain rate acting in the flame tangent plane. The response

of a laminar flame to strain rate and curvature depends strongly on the relative

molecular transport of thermal energy and chemical species. This is represented by
an effective Lewis number, Le, defined as the ratio 0_ thermal diffusivity to the mass

diffusivity of the deficient reactant. When heat and the deficient reactant diffuse

identically, i.e. when the Lewis number is unity, the flame structure exhibits a large

insensitivity to strain rate and curvature. For non-unity Lewis number, however,
differential diffusion of heat and species results in a strong sensitivity of the local
flame structure to strain rate and curvature.

Recent studies using DNS have shown that curvature rather than strain rate

determines the instantaneous local structure of premixed turbulent flames (Haworth

and Poinsot 1991, Rutland and Trouv_ 1991). The prevailing role of flame curvature

is an original and somewhat surprising result. Surprising, since, in current flamelet

models, strain rate is the relevant parameter to describe the flame-flow coupling,

and curvature effects are simply neglected. This apparent discrepancy lies in the
differences between the two levels of analysis. Flamelet models may be viewed as

empirical 'subgrid scale' models where the detailed flame front structure remains
unresolved. Therefore, although they may appear contradictory, findings pertaining

to the instantaneous local structure of the flame front do not necessarily invalidate

the assumptions used in the description of the flamelet structure, a description that

occurs at a higher level of analysis (at larger scales).

Hence, DNS, revealing strong curvature effects, and flamelet models, based on

a dominant role for strain rate, are not contradictory. In fact, they are found to
be consistent: DNS results show that curvature effects, however strong at the local

level, tend to cancel in the mean, leaving a net statistical effect on space-averaged

quantities that is related to strain rather than curvature.

To further document the respective roles of strain rate and curvature on the
turbulent flame structure, two different problems were studied in this past year:

• a model flame-vortex interaction problem. Simulations of a premixed laminar

flame interacting with a single vortex structure were used to determine whether the

prevailing role of flame curvature observed in previous simulations under turbulent

conditions could be reproduced in a laminar flow environment. Would that be the

case, this would demonstrate that the prevailing role of curvature over strain rate

in turbulent flames is essentially a laminar combustion phenomenon (Section 2.1).

• a two-dJmenslonal turbulent problem: simulations of a thick premixed flame

zone perturbed by small scale vortices. Previous simulations of premixed flames in

isotropic turbulence were representative of fast chemistry conditions (high Damkohler

numbers) (Haworth and Poinsot 1991, Rutland and Trouv_ 1991). In the fast chem-

istry limit, the reaction occurs in thin layers, and the local flame structure remains
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laminar-like. When the chemistry is slow (low Damkohler numbers), however, the

flame is dramatically disrupted by small scale, energetic turbulent eddies, and its in-
ner structure differs significantly from the laminar case. The objective of this study

was to investigate the persistence of Lewis number effects in low Damkolder num-
ber flames, i.e. in a situation where turbulent convection competes with molecular

transport in the reaction zone (Section 2.2).

I.?. A three-dimenJional data base for premized turbulent combustion

DNS refers to numerical methods with high resolution both in space and time

that fully resolve all of the relevant scales of the hydrodynamic flow field. The

acoustic field may or may not be resolved. When applied to turbulent combustion,

DNS is limited by computational expense to sirfiple reaction schemes. Instead of
using a detailed analysis of the complete combustion process, a reduced, finlte-rate

chemistry model is required. In addition, combustion is an exothermlc process, and

effects of thermal expansion due to the heat released by chemical reaction should be

resolved. However, under the 'constant density' assumption (a numerical artifact

that allows using a divergence-free velocity field, see Rutland and Trouv_ 1991),
these effects are not retained.

Thus, the available choices for DNS of turbulent combustion are:

• low Mach number or fully compressible simulations;

• constant density or variable density simulations;

• simple or complex chemistry.

The present work rests largely on the choices made by Dr. Poinsot (1989): heat
release and compressibility effects are fully accounted for; the chemistry model is

a single step, irreversible chemical reaction with an exponential dependence of the

reaction rate on temperature (Arrhenius kinetics).

The finite difference code developed by Dr. Poinsot, referred to as the Poinsot and
Lele code, is limited to two space dimensions. Since the dynamics of two-dimensional

and three-dimensional turbulence are known to be so dramatically different, this can

be in some cases a severe limitation. One objective in this past year was, therefore,

to develop a new code to treat three-dimensional geometries (Section 2.3).

2. Accomplishments

?..1 Flame.vortez interaction

It is our belief that significant improvements in the description of turbulent com-

bustion may be achieved by studying simple problems of laminar flames propagating

in non-uniform, steady, or unsteady flow fields. In the present study, DNS methods

were used to investigate the modifications of the inner structure of a premixed flame

due to the combined effects of hydrodynamic straining and flame curvature, under
unsteady flow conditions.

The computational configuration corresponds to a plane laminar flame stabilized

obliquely between co-flowing streams of unburnt and burnt gas and perturbed by

a vortex core that convects with the flow of fresh reactants (Figure l). The dy-

namics of the interaction are simulated in two-dimensions using the Poinsot and
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FIGURE 1. Flame-vortex interaction. Schematic of the computational configura-
tion.

Lele code. As discussed below, an important feature of the code is that it ac-

counts for variable transport properties, which means that diffusion coefficients are

temperature-dependent.

Diagnostics require defining a flame front, a local flame normal direction, and a

local flame speed. The flame surface can be defined using the progress variable,

c = 1 - Y, where Y is the mass fraction of the deficient reactant. Constant progress

variable surfaces are conveniently used to define the flame front location. We use

the surface c = 0.2. The flame normal direction is then defined using the local
gradient of c:

Vc

n- iVc[ (1)

In the range of parameters investigated, contours of c are essentially parallel within

the reaction zone and the flame surface and flame normal are defined unambiguously.

Flame curvature, k, is given by the divergence of the flame normal direction:

k = V.n (2)

Positive curvature is chosen convex towards the reactants.

The rate of strain, aT, is computed in the flame tangent plane:

aT = --nn : Vu + V.u (3)

where u is the flow velocity.

The reactant consumption speed, So, is a local and instantaneous property of the

flame front that characterizes the inner structure of the reaction zone. This speed

is defined by integrating the reaction rate along the flame front normal direction n:

so-Aft, an (4)

where p0 and Y0 are the density and the reactant mass fraction in the unburnt gas,

and the limits of integration are from the local position of pure reactants to that of

pure products.
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FIGURE 2. Flame-vortex interaction: (a) spatial distribution of curvature, k, and

strain rate, aT, along the flame front; (b) typical flame response to perturbations

due to curvature, k, and strain rate, aT, for Le > 1.

Two important aspects of the flame-vortex problem are as follows:

• the tangential strain rate, aT, and the flame curvature, k, are not independent

quantities. As shown in Figure 2a, flame elements in region A are positively strained

and negatively curved, while elements in region B are negatively strained and posi-

tively curved. Hence, aT and k are correlated quantities along the flame front, and

the correlation is negative.

• the negative correlation between aT and k results in opposite effects on the flame

inner structure. For instance, let us consider a Le > 1 flame. In this case, laminar

flame theory predicts a decrease (increase) of the local burning rate with positive

(negative) strain rate and an increase (decrease) with negative (positive) curvature

(Figure 2b). Hence, each flame element in regions A or B experience conflicting

influences due to strain rate and curvature. Similar arguments hold for Le < 1

flames. Therefore, for non-unity Lewis number, the resulting flame structure is

non-trivial.

Our purpose is to unravel the roles of strain rate and curvature at the flame,

and the conflict between their respective effects is a rather favorable feature as this

provides a mean to delineate between them. Note that, would the vortex core be

located in the burnt gas, the correlation between aT and k would be positive and
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the effects on the flame structure would be cumulative, rather than opposite. This

choice, however, does not serve our purpose. It also corresponds to much weaker

and, therefore, less interesting interactions because: (1) the vortex trajectory is

in that case deflected away from the reaction zone by thermally expanding gases;

(2) viscosity, which is an increasing function of temperature, is at least an order

of magnitude higher in the burnt gas compared to the unburnt value. Thus, the

choice of a vortex located in the flow of fresh reactants is deemed more appropriate.

In addition, this choice reproduces some of the features observed in past turbu-

lent computations. For instance, the simulations of turbulent flames by Haworth

and Poinsot (1991) exhibit a negative curvature-strain rate correlation, similar to

the present case. This negative correlation may be explained as follows: the sim-

ulations account for variable density and variable transport properties; both heat

release effects and the increased viscosity in the burnt gas result in asymmetric

characteristics of the turbulence close to the flame (high in the pre-flame gases,

low in the post-flame gases); this asymmetry is in turn responsible for the nega-

tive curvature-strain rate correlation at the flame. Work is currently in progress

to further characterize the relationship between the asymmetry of the turbulence

at the flame and the curvature-strain rate correlation (Section 2.3). Note that the

simulations by Rutland and Trouv_ (1991), which assume a 'constant density' flow

and do not include variable transport properties and, therefore, do not capture the

turbulence asymmetry close to the flame, fail to show any correlation between aT
and k.

The present simulations describe the classical roll-up process observed during

a flame-vortex interaction. The inner structure of the reaction zone adapts to

vortex driven hydrodynamic perturbations due to flow inhomogeneities, as well as to

geometrical perturbations due to the flame wrinkling. The simulations show that the

balance between both types of effects is strongly time-dependent. Initial conditions

correspond to a plane flame, where curvature effects are absent. Consequently,

early times in the computations feature a flame structure where strain rate effects

are dominant, aT is the relevant parameter, and k plays no direct role. As the

interaction proceeds, the flame rolls up around the vortex core, and curvature effects

become more intense. Also the vortex is affected by viscous diffusion, and the strain

rate field becomes weaker in time. A transition, therefore, occurs in the simulations,

and late times feature a flame structure where curvature effects prevail, k is then

the relevant parameter, and aT plays no direct role.

This transition is illustrated in Figure 3. The flame response is characterized in

terms of the spatial distribution of the local burning rate, So, along the flame front.

Figure 3 shows the time evolutions of rl, the linear correlation coefficient between

Sc and aT, and r2, the linear correlation coefficient between Sc and k, for Le = 1.2

and Le = 0.8. As discussed above, early moments of the interaction correspond

to a local flame structure controlled by aT. Consistent with laminar flame theory,

the correlation between Sc and aT is Lewis number dependent: the correlation is

positive when Le < 1 (rl approaching +1 in Figure 3a), and negative when Le > 1

(rl close to -1 in Figure 3b). Late times, however, correspond to prevailing effects of
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FIGURE 3. Flame-vortex interaction. Time evolution of rz and r2, defined as the

linear correlation coefficients between respectively So and aT, and Sc and k: (a)

for a Le = 0.8 flame; (b) for a Le = 1.2 flame. Time is made non dimensional by

the flame time scale. The descriptor LFT on the !/axis indicates the range of values

for rz and r2 that are consistent with laminar flame theory. Strain rate (curvature)

is said to be dominant when rl (r2) is in that range.

the flame curvature, k. Again, consistent with laminar flame theory, the correlation

between Sc and k is Lewis number dependent: the correlation is positive when

Le < 1 (r2 close to +1 in Figure 3a), and negative when Le > 1 (r2 close to -1 in
Figure 3b). Note that since aT and k are correlated quantities, the flame response,

if correlated to aT, is also correlated to k, and vice versa. This is clearly seen

in Figure 3 where the curves rz(t) and r2(t) exhibit roughly symmetric behavior.

Consistency checks with laminar flame theory are required to decide which of these
two parameters, aT or k, plays a dominant role.

The observation of a transition from a flame structure initially controlled by

strain rate to a structure ultimately controlled by curvature is original but not
unexpected. This transition is clearly related to our particular choice of initial

conditions. It is also related to our choice of a two-dimensional configuration where,

in absence of three-dimensional stretching, the vortex strength must decay in time.

A more meaningful result is obtained by studying the amount of time required for

the transition to occur. This characteristic time, _', is the key quantity to decide
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which of aT or k is the relevant parameter that controls the local flame structure.

Simulations have been performed for a variety of vortex sizes (up to three times the

thermal thickness of the unperturbed laminar flame) and a variety of vortex speeds

(from two to twenty times the unperturbed laminar flame speed); the characteristic
time, r, always came out to be short compared to the total flame-vortex interaction

time. The main observations are that: (1) r is found to be closely related to the

wrinkling of the flame; (2) the flame is only weakly curved when the transition
occurs (a typical value for the flame radius of curvature at time r is five times the

laminar flame thickness); (3) r does not depend significantly on the vortex speed.

In other words, as soon as the flame gets wrinkled and irrespective of the vortex
strength, a transition in the flame structure is observed. Since the characteristic

time, r, is highly sensitive to curvature but not to strain rate, we are led to the

conclusion that the structure of premlxed flames (laminar or turbulent) is primarily
determined by the flame geometry.

In summary, simulations of a premixed flame interacting with a single vortex
structure reveal a structural transition from a strained-type flame to a curved-type
flame. The rapidity of that transition is a remarkable result that demonstrates

that, locally, curvature is more important than strain rate. These conclusions agree

with previous simulations of turbulent flames, and the prevailing role of curvature
on the local structure of turbulent flames may, therefore, be viewed as a laminar
combustion phenomenon.

Y,._.Small _cale turbulence acting on a thick flame zone

Previous simulations of flame-turbulence interactions were limited to fast chem-

istry conditions (Haworth and Poinsot 1991, Rutland and Trouvd 1991). Since, in

this situation, the local flame structure remains laminar-like, this regime is usu-
ally referred to as the laminar flamelet regime. Under slow chemistry conditions,

however, the flame-turbulence interactions are more intricate. Slow chemistry con-

ditions correspond to thick flames, i.e. thicker than the Kolmogorov-sized eddies. In

this situation, small scale turbulent eddies penetrate into the reaction zone, and the

structure of flame elements is disrupted in a way that precludes any analogy with

laminar flame theory. It is traditionally believed that such conditions correspond

to a dramatic change in the flame topology and that the flame will experience a
transition from flamelets to a distributed mode of combustion.

The computational configuration is sketched in Figure 4. The left- and right-hand

sides of the domain axe inflow and outflow boundaries, while periodic boundary
conditions are applied at the top and bottom. The calculations are initialized with

fresh reactants on one side of the domain and burnt products on the other side; the

two are separated by a plane laminar flame. Isotropic turbulence is initially located

in the flow of fresh reactants, its velocity field being specified according to a model

spectrum. The turbulence is characterized by an integral length scale smaller than

the thermal thickness of the laminar flame and a turbulence intensity that is much

higher than the laminar flame speed. The initial turbulent Reynolds number is 140,

and the initial Damkohler number, defined as the ratio of the integral time scale of

the turbulence to the flame characteristic time, is 0.005. The turbulence is decaying
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FIGURE 4. Small scale turbulence acting on a thick flame zone. Schematic of the

computational configuration. Initial conditions for temperature and reaction rate

correspond to a plane laminar flame.

in time, and conditions are non-stationary. The dynamics of the flame-turbulence

interaction are simulated in two-dimensions, using the Poinsot and Lele code. The

grid resolution is 325 _.

Typical results are shown in Figure 5 for a Le = 1.2 flame. Some striking dif-

ferences with high Damkohler number flames are observed; for instance: (1) the
preheat zone is dramatically altered by the small turbulent eddies, and its structure

differs significantly from the laminar case; (2) the reaction zone is highly wrinkled
by the turbulence, leading to the formation of cusps pointing towards the fresh

gases. However, one important similarity with high Damkohler number flames is

the strong correlation between the local reaction rate and the flame curvature. In

Figure 5, the reaction rate respectively increases or decreases with negative or posi-

tive curvature. Opposite trends are observed for Le = 0.8 flames. These trends are



282 A. 2_,uv_

_i.. _)''':' :_:" ':"_.'_3",,, ':_

VORTICITY

TEMPERATURE

_ 2D

non-unity Lewis number
(Le = 1.2)
isotropic turbulence
slow chemistry conditions

Re r _ u,,.s I _ 140
V

Da - l I u,n s _ 0.01

8r/

+

REACTION RATE

FIGURE 5. Small scale turbulence acting on a thick flame zone. Typical results for

a Le = 1.2 flame. The plus (minus) signs in the plot of the reaction rate indicate

increased (decreased) intensities of the local burning rate and emphasize the strong
correlation between the flame structure and curvature.

consistent with curvature-induced Lewis number effects in laminar flame theory.

At this point, conclusions are that:

• Lewis number effects are persistent in low Damkohler number flames. Note that

this result is far from being intuitive since, in this situation, turbulent convection

competes with molecular transport in the flame zone, and the influence of the

Lewis number, a number based exclusively on molecular diffusivities, might have

been expected to be diminished;

• the local flame structure is controlled by curvature, not by strain rate. Again, this

result is striking when considering the high rates of strain imposed by the turbulent

flow field;
• modifications of the flame inner structure occur on a time scale that is related to
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the wrinkling process, i.e. a turbulence time scale as opposed to a chemical time
scale.

These conclusions bear some analogy with the results of Section 2.1 and bring
further support to the concept of a local flame structure determined by the flame

geometry.

Another question of fundamental interest is the question of the flame topology.
This question is related to the definition of the domain of validity of flamelet models.

In the following, we propose a mechanism for the transition from flamelet combus-

tion (defined as a surface mode of burning) to a distributed reaction zone (defined
as a volume mode of burning), and we show that this mechanism is rather unlikely.

Figure 6 shows contours of the reaction rate at four successive instants from a
simulation of a Le = 0.8 flame. At times tl and t2, the intense turbulent motions

result in the formation of two pockets of burnt fluid within unburnt, labelled A and

B. These pockets correspond to hot material trapped within fresh reactants, and one

may wonder whether these conditions are sufficient for ignition of the surrounding

reactive fluid. This question is crucial. We believe that the answer to that question
determines whether a transition from flamelets to a distributed mode of reaction is

likely to occur. Indeed, if pockets like A and B are capable of growth and are found
to develop as new flame kernels, the process could repeat and multiply, its rate of

occurrence would increase, and a transition to a volume mode of burning might be

expected. In any case, the flamelet picture would no longer be valid. As shown in

Figures 6 (times t3 and t4), however, both pockets A and B are rapidly quenched.

In the above mechanism, the issue of an eventual change in the flame topology

is related to the problem of flame ignition in turbulent flows (see Poinsot 1991 for

a numerical study of this problem). Asymptotic studies of the problem of flame

ignition in laminar flows (see Poinsot 1991 for references) have shown the existence

of a critical radius of curvature below which a flame kernel, cylindrical or spherical,

cannot propagate and is led to extinction. A similar mechanism is at play in the
present turbulent simulations: the pockets A and B in Figure 6 exhibit characteristic

sizes that axe too small for combustion to be_sustained. Larger length scales are

required for flame propagation. This does not mean, however, that large turbulent

structures axe better suited for promoting a transition to non-flamelet combustion:
short flow time scales axe also required when producing pockets A and B (the

turbulence must prevail over counter-acting effects of laminar flame propagation);

large turbulent structures feature longer time scales and are, therefore, unlikely to

support the above mechanism.

In conclusion, small turbulent structures are not capable of modifying significantly

the flame topology. It is argued that larger structures are unlikely to be more
successful. Although we recognize that some other mechanisms are possible for a

transition to non-flamelet combustion, for instaxlce mechanisms related to thermal

quenching or chemical-kinetic quenching, our results certainly indicate that the

domain of validity of the flamelet approach for premixed turbulent combustion is

probably larger than previously thought.

!
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FIGURE 6. Small scale turbulence acting on a thick flame zone. Four successive

plots of the reaction rate, for a Le = 0.8 flame. These plots describe a dramatic dy-

namical event: small amounts of burnt material are separated by turbulent motions

from the post-flame gases, leading to the formation of pockets A and B (times tl and

t2); these pockets are not capable of growth and ultimately experience quenching

(times t3 and t4).

_.$ A new three-dimensional data base for premized turbulent combustion

The Poinsot and Lele code is a finite difference code that solves for the unsteady

Navier-Stokes equations in non-periodic domains. Time advancement is with a

third-order Runge-Kutta scheme. A sixth-order Pad_ scheme is used for spatial

discretization. As discussed in Section 1.2, the simulations include finite chemical

reaction, heat release, and compressibility effects.

The code has been used previously to generate a data base for premixed flames

in decaying, isotropic turbulence (Haworth and Poinsot 1991). Due to the code
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FIGURE 7. Three-dimensional simulation of a premixed flame in isotropic turbulent

flOW.

features, this data base is quite unique. However, the two major shortcomings of

this data base are that: (1) the simulations are limited to two space dimensions;

(2) the chemistry model is over-simplified (single step chemistry). In this past year,

a new code has been developed to treat three-dimensional geometries. The code

can carry a variable number of scalars and can be easily adapted to more complex
chemical schemes. This code is referred to as the Trouvg and Lee code.

The Trouv_ and Lee code is currently used to study the evolution of premixed

flames with single-step chemistry in three-dimensional, decaying, isotropic turbulent

flow. The computations are performed for three different Lewis numbers, Le = 0.8,

1.0, and 1.2. The grid is 1293. Figure 7 shows a typical plot from the new data base.

Work is in progress to analyze this data base and study some important issues that

were left unresolved in previous work, for instance the question of the correlation

between strain rate and flame curvature (see Section 2.1).
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3. Ongoing and future plans

• a three-dimensional data base for premixed turbulent combustion. As mentioned

in Section 2.3, the Trouv¢_ and Lee code is currently used to study the evolution of

premixed flames in three-dimensional, isotropic turbulent flow. The first objective in

the coming year is to complete this study and extend it to the case of homogeneous
shear flow. Both flows are considered as building blocks in the development of
turbulent combustion models.

• simple or complex chemistry? Single-step chemistry does not allow for chemical-

kinetic extinction, and this is recognized as a severe limitation in problems where

quenching is expected to play a central role. Therefore, a second objective in the
coming year is to assess the influence of the choice of the chemical model on DNS

results. The Trouv_ and Lee code will be used with a new two-step chemical scheme.

Due to the increased computational cost, this study will be limited to two space
dimensions. The flame response to hydrodynamic straining and curvature will be

studied both under adiabatic and non-adiabatic conditions, and extensive compar-
isons will be made between the original single-step and the new chemistry models.
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Linear stability analysis of

hypersonic boundary layers

By E. Guilyardi, J. J. W. van der VegC AND J. H. Ferziger 2

1. Motivation and objectives

Transition to turbulence is of great importance in the design of the new generation
of hypersonic aircraft. Together with experiments, direct numerical simulations can

provide valuable information on this phenomenon which is yet not well understood.

In performing such simulations, linear stability analysis can be of enormous value

in providing physical understanding and initial conditions.

The growth or decay of infinitesimal perturbations superposed on laminar solu-
tions of the Navier-Stokes equations is the subject of the linear stability theory. The

basic equations governing the linear stability of parallel-flow compressible boundary-

layers are derived by linearizing the Navier-Stokes equations about the laminar flow.

These initial perturbations are usually assumed to be of the form

u'(z, y, t) = _(y)e i(a=-"_O . (1.1)

For temporal stability analysis, a, the streamwise wavenumber, is fixed and real

and w, the frequency, is complex; for spatial analysis, a is complex and u, is fixed

and real. In temporal analysis, w = u_,. + ical, w,. is the frequency and wi is the

growth rate of the perturbation. These infinitesimal disturbances are imposed on

the compressible Navier-Stokes equations linearized about a laminar boundary layer

solution. If it is assumed that the mean flow is locally parallel, a set of five ordinary
differential equations is obtained. Of these, three are the second order momentum

equations, one is the second order energy equation, and one is the first order conti-

nuity equation; thus the complete system is ninth order. For a complete review of

boundary-layer stability theory, see Reshotko (1976) or Mack (1984).

Mack (1984) showed that the second mode, which is active at supersonic speeds,

has considerably higher growth rates than the first mode (which are the Tollmien-

Schlichting waves). Mack further showed that the second mode is destabilized by

wall cooling, unlike the first mode. The second mode also offers the advantage that
two-dimensional waves are the most unstable second modes. We chose to begin by

performing calculations of second mode instability of a flat plate boundary layer

at Mach 4.5 as other computations are available for comparison (Erlebacher and
Hussaini, 1990).

With the aid of the temporal linear stability code COSAL written by Malik (1982,
1990), our goal is to generate profiles of the most unstable waves to provide initial

1 Present address: ICOMP, NASA-Lewis Research Center, Cleveland, OH

2 Stanford University
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data for the direct numerical simulation code written by van der Vegt (1990). The
COSAL code was modified in several ways to meet this requirement. Improvements

needed in the accuracy of the computation of the eigenfunctions were noted in van

der Vegt and Ferziger (1990). Various numerical methods and grid adaptation have

been applied in order to increase the accuracy of the results produced by the linear
stability code.

2. Accomplishments

_,.1. The linear stability code : COSAL

?,.1.1 Introduction

COSAL is a compressible linear stability analysis code for two-dimensional bound-

ary layers. It uses an iterative finite-difference method to compute the most unsta-

ble eigenvalue and requires an accurate estimate of the most-unstable eigenvalue.

A local eigenvalue search procedure improves the accuracy of the eigenvalue and
also yields eigenfunctions and group velocities. A global eigenvalue procedure was

developed which may be used when no estimate of the most unstable eigenvalue
is available. The elements of COSAL that were modified are first presented in the
following lines.

]LI._, Mean flow laminar profile

The mean flow is a similarity solution for the boundary layer on a flat plate
obtained from the compressible form of the boundary layer equations; the resulting

ordinary differential equations are solved using Keller's box method; see Cebeci and

Smith (1974) for details. The mean flow profile for an adiabatic fiat plate at Mach
4.5 is given in Figure 1.

The grid used for the numerical discretization of the boundary-layer equations

was originally an exponentially stretched mesh which yielded high resolution near
the wall and rapidly increasing mesh spacings away from it.

YLI.$ Global method

When no guess of the most-unstable elgenvalue is available, COSAL uses a global

method that computes the whole eigenvalue spectrum. The finite differenced com-

pressible stability equations can be reformulated as a matrix eigenvalue problem

A_ = wB@, (2.1)

where w is the eigenvalue and @ the discrete representation of the eigenfunctlons.

The elgenvalues are the roots of the determinant equation

DetI-B-1-A - 0JI I = 0. (2.2)

This is a standard matrix eigenvalue problem and is solved using the LR method.

The most unstable eigenvalue is the one that satisfies the conditions

_ai>0
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FIGURE 1. Mean Flow Profile for a Flat Plate, Moo = 4.5, Pr : .7, Re6. = 8000.

and

_.I._ Local method

When a guess for the most-unstable eigenvalue is available, it can be improved by

a local method which also computes the corresponding eigenfunction. In the original

version of COSAL, this was done with an inverse Rayleigh iteration procedure,

for which the theory was presented in Wilkinson (1965). Generalization of this
procedure to the compressible stability problem results in the following algorithm

(_ - _h'_')C)(h+]) = _(I)(k)

(_(k+_), _(h+_))

_h+1 = (_(k+_),_'C)(k+1))"

(2.4)

(2.5)

(2.s)

The iteration cycle is started with the guessed eigenvalue produced by the global

method, w0, and an assumed but arbitrary smooth profile for the eigenfunction @(0)

and its adjoint _(0). The algorithm converges cubically for the eigenvalue, but the

eigenfunction converges at the square root of this value, as stated by Hackbusch

(1985). In Figures 2 and 3, we present the temperature and velocity components of
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the eigenfunction obtained after local computation for the adiabatic wall fiat plate

at Mach 4.5. The corresponding eigenvalue (for the most unstable second mode) is

w = 2.04706 + 0.02283i.

We see that the fluctuations axe not restricted to the vicinity of the wall and that

significant gradients appear up to a distance of several _* from the wall.

$,.2. ModificationJ made to COSAL

$'.$'.1 General strategy

As noted in the previous section, the emphasis was originally on guaranteeing

the accuracy of the computation of the eigenvalue. Concerns about accuracy in the

eigenfunctions axe rarely found in the literature. Most authors base their conver-

gence criteria on the eigenvalue and present the eigenfunctlons as a by-product of
the eigenvalue calculation. However, to use the results of linear stability analysis as

input to direct numerical simulations of transition, we need accurate eigenfunctions

and must, therefore, be concerned with the convergence of the eigenfunctions as

we1 the eigenvalue. Our assumption is that complete convergence of the eigenmode

problem is only achieved when both quantities are converged.
The main goal of this work is to improve the accuracy of the calculation of the

most unstable eigenfunction by the local procedure. This required improvement in
three different areas:

• use of improved grids in the mean flow calculation;

• abandonment of inverse Rayleigh iteration in favor of a Newton method in the
local calculations;

• implementation of an adaptive grid algorithm in local calculations.

Our objective is to keep the number of mesh points as low as possible (no more

than a few hundred) as the profiles obtained from the local computation will be

used in a simulation code that is much more expensive to run than the stability

code itself. These refinements are not needed in the global calculation which are

only required to provide a reasonable estimate of the most-unstable eigenvalue.

$'.$'.$' New grid8 for the mean flow computation

By considering the truncation error inherent in flnlte-difference approximations,

Vinokur (1983) proposed new grid stretching functions based on the inverse hyper-

bolic sine. Using these stretching functions for the generation of mean flow grids

yields better accuracy for a given number of grid points than is obtained with an

exponentially-stretched mesh. We studied the effect of the new mesh generation

scheme on profiles prior to using them in local calculations.

$,.$,.3 Newton method for local computations

The original local eigenvalue convergence process (inverse Rayleigh iteration) has

been changed to Newton iteration which yields the same accuracy for both the

eigenvalue and the eigenfunction.
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In symbolic form, the linear disturbances satisfy the system of ordinary differential
equations which can be written

L@ = H,

where @ is the five-component vector defined by

(2.7)

The boundary conditions for Eq. (2.7) are

y=0; _1 =62 =64 =6_ =0 (2.8)
y _ co; _1,62,_4,_5 -" 0.

For the local eigenvalue problem, Eqs. (2.7) axe a block-tridiagonal system which

is solved using LU factorization. As Eq. (2.7) is homogeneous, in order to avoid
a trivial solution, one inhomogeneous boundary conditions is imposed at the wall.

Specifically, as proposed by Malik (1990), the boundary condition 61(0) = 0 is
replaced by 6s(0) = 1. This is equivalent to normalizing the eigenfunction so that

the value of the pressure perturbation at the wall is unity. Since the pressure
does not vanish at the wall, this condition is appropriate. See the discussion in

MMik (1990) for other possible normalizations. A non-trivial solution may now be
obtained if w = _o0, the correct eigenvalue. Newton's method is then used to iterate

on w so that the missing boundary condition 61 (0) = 0 is satisfied. After a solution

_I,is obtained using the estimated value of coo, the correction Aw is determined from
the linearized equation

61(0) + 061(0) A_0 = 0, (2.9)

where 61(0) is known from the solution _ just computed; 061(0)/o_ is obtained by
solving

L O_ OL
= -_. (2.10)

The processisrepeateduntil61(0)va_shes withina preassignedtolerance.

We ran the localcomputation with thisnumericalmethod on the griddescribed

above and the eigenvaluekept with 10 significantdigitsof accuracy.At the same

time,the accuracy of both the eigenvalueand the eigenfunctionswere checked by

regularlydoublingthe number of mesh points.Figure4 presentsthe absoluteerror

in the realand imaginary partsof the frequencyversusthe number ofgridpoints.

The slopesof the two linesconfirmthe second order accuracyofthe method. Now

considerthe eigenfunctlons.Figure 5 presentsthe absoluteerrorhistoryfor the

imaginary part of the temperature eigenfunctionas the number of mesh points

isincreased. After a minimum number of mesh pointssufficientto capture the

structureof the eigenfunctionis reached,the localmaxima in the error in the

temperatureeigenfunctiondecreaseat the same rateas the elgenvalueerrorshown
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in Figure 4. With one thousand mesh points, we now obtain an accuracy of 10 -s

compared to 5.10 -2 with the inverse Rayleigh iteration.

_.2.$ Grid works

The grids used in linear stability analysis have a significant effect on the results.

As we are using a second order accurate numerical scheme, the grids need to be

very smooth. Following the grid trials for the mean flow, we tried the Vinokur grids

in the local calculations. Besides being smooth, they allow considerable control

of the distribution of the grid points, which is not the case with exponentially

stretched grids. The slopes at the wall and free-stream can be specified. It is also
possible to join different Vinokur grids while retaining smoothness at the junctions.

Finally, the number of grid points does not affect the shape of the grid. Several

Vinokur grids were tried in the local computation. The resulting changes in the

eigenvalue _v is an indicator of how sensitive these computations are to the grid.
This naturally led us to implement an adaptive grid algorithm controlled by the

error in the eigenfunctions.

Numerous adaptive grid methods are available. Most of them can be divided

into two categories: displacement methods and refinement methods. The first type
used a fixed number of mesh points and the adaptation consists of rnovino the

mesh points from low-gradient regions to high-gradient regions. The second type

starts with a coarse mesh and adds points in high-gradient regions. In an attempt
to minimize the number of mesh-points, we first tried the displacement method

based on a error equidistribution variational process proposed by Eiseman (1987).

Although promising at low Mach number, this method was not able to handle the
very steep gradients in the hypersonic second mode eigenfunctions, especially in the

temperature eigenfunction. The main cause was the inability of the algorithm to
maintain the proper smoothness of the grid.

It was then decided to develop a grid-refinement method that would maintain the

required mesh smoothness. The algorithm is defined by the following steps :

(i) The initial grids, G0 and G1, are Vinokur grids of 41 and 81 points;

(ii) The eigenfunctions computed on Gi and Gi-1 are compared and estimates of
the error are constructed. Refinement intervals are introduced where the solution

error is greater than a specified e;

(iii) The number of points on each refinement interval is doubled by adding the

mid-points of the old grid;

(iv) Smooth connection between new grids and the old ones is assured by a data-
passing scheme;

(v) repeat steps (ii)- (iv) until no more refinement intervals are found.

The main difficulty was the choice of interpolation method. To avoid the wiggles

that appear with B-spline interpolation, we used the interpolation method proposed

by Akima (1970). This method is based on piecewise cubic polynomials. The slope
is determined using a second-order geometric rule which leads to very "natural

looking" and smooth grids. The junctions between the old parts of the grid and

new the parts generated with Akima's method were made from fifth-order B-splines.
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This new method was first tested on a Much 0.5 case for which the eigenfunctions

are smooth. The iteration process converged rapidly (in less than 10 iterations) for
e _ 10 -s. For lower values of e, the first 10 iterations simply doubled the points

everywhere thus producing a huge number of grid points. This demonstrated the

need for early capture of the significant gradients. Consequently, to obtain very low

error (say e _ 10-7), we first need to converge for an intermediate value of e and

then restart the process on the resultant grid with a lower value of e.

This process is illustrated by Figure 6. We see the capture of three high-gradient

regions during the refinement process. Convergence to e = 10 -4 is obtained on the

sixth grid. Iteration continues with e = 10 -5 until convergence is obtained on the

ninth grid. Figures 7 and 8 show the accelerated convergence of the eigenfunctions

due to the capture of those layers.

In Figure 7 we plot the difference between the converged eigenfunction obtained

with e = 10 -4 and the solutions on the intermediate grids. Note the big jump

between the last two results. This should be compared to the convergence history

in Figure 5. In Figure 8, we compare the converged solution for e = 10 -s to

the solutions obtained on all intermediate grids, including those of Figure 7. It

is interesting to note that these "jumps" in the eigenfunction are accompanied by
corresponding "jumps" in the eigenvalue. The eigenvaiues obtained on the various

grids of Figures 7 and 8 are given in Table 1.

Grid (# of points) w

1 (41)
2 (81)
3 (181)

6.224E - 2 + 2.727E - 3i

6.224E - 2 + 2.766E - 3i

6.224E - 2 + 2.775E - 3i

-2+
-2+

-2+
-2+

-2+

-2+

4 (321) 6.224E

5 (467) 6.224E

023) 6.242E
7 (10Sl) 6.242E
8 (1485) 6.242E

9 (2791) 6.342E

2.933E - 3i*

2.933E - 3i

4.627E - 3i*

4.627E - 3i

4.627E - 3i
4.266E - 3i*

Local Grid Adaptation Method,TABLE 1. Most Unstable Eigenvalues found by

(* denotes new structure captured).

I'o verify that the solution is not jumping from one eigenvalue to another, we

ran the global calculation using the same adapted grid and found the same most
unstable eigenvalue. This confirms our assumption that complete convergence of the

eigenmode problem is achieved only when both the eigenvalue and the eigenfunction

are converged.

Running this adaptive process for the Much 4.5 case led to convergence in eleven

iterations to e = 10 -4. The adaptive process was not able to continue because the

B-spline caused increasing wiggles in the grid. A new adaptive method is being
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developed to avoid that phenomenon (see future plans). The final number of grid-

points was about 1500, which is too many to use in direct numerical simulation.
We reduced this number by taking every fifth point to create a 300 point grid which

has the _arae dructure as the 1500 point one. Using these eigenfunctions in the

simulation code improved its performance. Several CPU hours were saved on a

CRAY Y-MP because the simulation code did not have to adjust the eigenfunction

shape before being able to simulate their growth.

These encouraging results show that the eigenmode problem is now being solved

accurately. During this study, it was found that accuracy requires capture of the
relevant phyJical/ayer# in the temperature and velocity profiles. Once this is real-

ized, it becomes possible to ensure convergence of the eigenvalue and eigenfunction

with a relatively small number of grid points. Perhaps just as importantly, the

adaptive technique yields as a by-product a grid which is nearly ideal for the direct
simulation of transition.

3. Future plans

• In order to decrease the number of points needed to obtain the required ac-

curacy, a fourth order compact difference scheme will be implemented in the local
calculations. This will also reduce the smoothing requirements for the grids used in
these calculations.

• Because the resolution required for a given error is not uniform and is unknown
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in advance, an adaptive grid will probably be required in the simulations of transi-

tion. Although they are not reaJ]y needed in the instability calculations which are

only one-dlmensional, this is an ideal place to test them prior to their installation

in the multi-dimensional code. The results reported here are an encouraging first
step in that direction.

• As the results of the stability code are to be used as input to the three dimen-

sional code and small changes in the eigenfunctions can result in large effects in the
transition simulation, it is important that the grids used in the two calculations be

as similar as possible. We, therefore, intend to allow the DNS code and the stability

code to communicate directly to ensure consistency.
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Methods for direct simulation of transition

in hypersonic boundary layers II

By J. J. W. van der Vegt 1

1. Motivation and objective

The prediction of transition to turbulence in compressible boundary layers cur-

rently receives significant attention due to its importance in the design of high

speed transport vehicles. Drag, llft, and heat transfer strongly depend on whether

the boundary layer is laminar or turbulent. The study of transition in compressible

boundary layers by means of direct numerical simulation (DNS) provides informa-

tion not available from the commonly used linear and non-linear stability theories.

Non-parallel and non-linear effects in the boundary layer can be studied and in-

formation useful to modeling of transitional flows can be obtained. The extremely

high numerical accuracy and large computing resources necessary for DNS of com-

pressible boundary layers, however, axe obstacles to the use of DNS in high Mach

number boundary layers.

In our previous report, Van der Vegt and Ferziger (1990), we discussed the devel-

opment and application of a numerical scheme for the computation of transition in

compressible boundary layers. Unfortunately, we encountered serious problems in

the application of this method. One problem was related to the generation of initial

disturbances, the eigenfunctions of the linear stability problem, needed to start the

direct simulations. In a separate paper in this report, Gnilyardi et al. (1991), we

discuss the problems in solving the linear stability problem with high accuracy for

both eigenvalues and eigenfunctions. Previous research has concentrated mainly on

the accuracy of the eigenvalues, not on the accuracy in the eigenfunctions. The lack

of accurate initial data has seriously hampered progress in the direct simulations.

The use of the adaptive method discussed in Van der Vegt and Ferziger (1990) was

helpful in generating a grid with enough resolution in the critical layers, but experi-

ence with the linear stability problem usingseveral grid adaptation methods showed

that the eigenvalue problem is extremely sensitive to the smoothness in the grid.

Significant progress has been made by studying the less expensive linear stability

problem and is reported in Guilyardi, et al. (1991). It is expected that the progress

made with adaptive grid generation in the linear stability problem will be helpful

in the future development of the DNS code.

In addition to the extensive study of the linear stability problem, a significant

effort has been made to increase the accuracy of the numerical algorithm used for

direct simulations. In our previous report, Van der Vegt and Ferziger (1990), see also

Van der Vegt (1991), we discussed improvements to the upwind numerical scheme

1 Present address: ICOMP, NASA Lewis Research Center, M. S. 5-3, Cleveland, OH 44135
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which reduce the numerical dissipation in the boundary layer region. We want to

study flows with both strong shocks and boundary layers, but, unfortunately, most

shock capturing schemes are very dissipative in the boundary layer. We presented a

fully implicit finite volume method, and significant progress was made in improving
the efficiency of a fully implicit method without using the approximate factorization

method of Beam and Warming (1978). The finite volume method, however, is only
second order accurate, and it was felt that higher order accuracy is necessary in

order for success in DNS of transition. The construction of an implicit and time
accurate fourth order scheme is the subject of this report.

2. Accomplishments

In order to be useful for direct simulations of transition in boundary layers, the

numerical scheme must be higher order accurate and implicit. The severe time step

limitation, when using an explicit scheme with small grid spacing close to the wall,
would otherwise make the simulations prohibitively expensive. The construction

of higher order shock capturing schemes for the Euler and Navier-Stokes equations

is a non-trivial task and is currently the subject of intensive research. Significant

progress still has to be made. For instance, the numerical scheme used by Rai and

Moin (1991) for the direct simulation of bypass transition is higher order accurate,
but they are not able to capture shocks because they use a non-conservative formu-

lation. It is very difficult to combine shock capturing without numerical osciUations
and uniform higher order accuracy. Many finite volume methods based on the TVD

property of the one-dimensional Euler equations are capable of accurately capturing
shock and expansion waves with a few grid points. Unfortunately, high order TVD

schemes, also called high resolution schemes, break clown to first order accuracy at

non-sonic local extrema in one dimension and are formally only first order accurate

in more than one dimension; see, for instance, Osher and Chakravarthy (1984).
In order to bypass this limitation, Harten et al. (1987) developed essentially non-

oscillatory (ENO) schemes, which have uniform accuracy away from discontinuities.

The application of ENO schemes wiU be discussed in the next part of this report.

A second important activity has been the implementation of a fuUy implicit and

time accurate integration scheme. This was already discussed in our previous report,
Van der Vegt and Ferziger (1990), but changes were made to convert the time

integration method to a full Newton scheme. This was necessary because it is not

possible to use higher order approximation of the derivatives for the implicit part

of the equations when the explicit part is approximated with higher order accuracy.

This would reduce the accuracy of the total scheme for time accurate problems,
and the higher order accuracy is obtained only when steady state is reached. This

approach has also been used by Rai (1987) and Rai and Moin (1991) to reduce the

approximate factorization error in their scheme. It turned out that the convergence

of the Newton scheme strongly depends on the implementation of the boundary
conditions.
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_.I Numerical method

The present algorithm solves the two-dimensional compressible Navier-itokes

equations in conservation form in an arbitrary coordinate system. These can be
written:

NU+_(E-Q'.I.,)+--_a(_ _Q" ,,)=0 (1)

with:

and:

_to., =-_v +-_i;-ir.,o. = -_v + _x

U= P_' ; E- Pu2+P
puw ; G =

(e + p),, )
/ )puw

pw 2 +p

\ (e + p)w

( o ) ( o )1 rz,, 1 w**
v=R_-- .. ..

Urzz + W'rzz -- q° q*(_-I)M2p,. u_'z, + wrzz -- (__l)M2p,.

Here p represents the density, u and w the Cartesian velocity components, p
the pressure, and c the total energy. The variables z and y represent Cartesian

coordinates, whereas _ and r/ represent curvilinear coordinates. The coefficients

Re, M, and Pr are the Reynolds, Mach, and Prandtl number, respectively. The

components of the shear stress r and heat flux q in V and I are functions of

and _7. All variables are non-dlmensionalized using free-stream variables and a

characteristic length.

The Navier-Stokes equations are solved using a finite volume method because we

seek a weak solution in order to capture shocks in high Reynolds number flows.

The finite volume method is also the most natural way to satisfy the conservation

properties of the differential equations. Applying Gauss' theorem and integrating

equation (1) over a small volume gives the finite volume formulation of the com-
pressible Navier-Stokes equations:

aUij -
+ E_+i,_ - E'-_,_ + G',_+i - G',_-_ = 0 (2)

where a barred quantity with index i,j is an average of the unbarred quantity over

the cell with index i,j and indices i + ½ and j + ½ refer to values at the cell faces.



303 J. J. IV. _an der Veft

P,.tJSpatial diacretization

The computation of the fluxes across the cell faces is the most important part of

the numerical scheme. Flux vector or flux difference splitting is used because, in up-

wind schemes, they automatically generate the proper amount of numerical viscosity
in discontinuities, guaranteeing that stable non-oscillatory solutions are obtained

when an entropy condition is satisfied, see for instance Osher and Chakravarthy
(1984). The upwind method is also very benefidal for the implicit part of the al-
gorithm because it yields a more diagonally dominant matrix suitable for iterative

solution. Both Steger-Warming, see Stager and Warming (1981), and Osher flux

splitting, see Chakravarthy and Osher (1983), are used. For the implicit part, how-
ever, the Steger-Warming splitting is always used because the direct linearization of

the Osher flux vector is very expensive and the use of Newton iteration, discussed

in the next section, will reduce the error caused by the approximate implicit con-
trlbution, see Rai and Chakravarthy (1986). The Steger-Warmlng splitting has the

benefit of being relatively inexpensive, but the Osher splitting is less dissipative.
The Osher flux splitting also has the benefit of being Lipschitz continuous, which

is important when computing the Jacobian of the flux vector for the implicit con-
tribution. When the Steger-Warming splitting is used, an upwind biased scheme

is necessary to reduce the numerical dissipation in the boundary layer, for more
details see Van der Vegt (1991).

In order to obtain a higher order scheme, we have to approximate the fluxes at the

cell faces by a higher order polynomial. One problem with higher order interpolation

in finite volume methods is that we are solving equations for the averaged values
in the cells, while needing point values at the cell faces to compute the fluxes.

This is referred to as the reconstruction problem by Harten et at. (1987). Using
a higher order Newton interpolation scheme based on divided difference tables,

they construct a polynomial from the averaged values which is both higher order

accurate and conservative. In order to prevent the scheme from using points across
a discontinuity, which would give oscillations in the interpolations, they use the

divided difference table of the interpolation to determine the stencil which gives

the smoothest solution. The ENO scheme, therefore, dynamically adapts its stencil

to give uniform higher order accuracy outside discontinuities, and, when combined

with a Riemann solver, it captures both shock and expansion waves accurately. The

ENO scheme consists of three steps: a reconstruction step, the computation of point

values from cell averaged values; the solution of the Riemann problem at the cell
faces; and the averaging of the solution to give the cell averaged values.

In one dimension, these methods have been very successful, Harten et at. (1987),
especially when used with methods which recognize a shock such as Harten's subcell

resolution scheme, Harten (1989). In higher dimensions, however, serious problems

occur because the reconstruction becomes very complicated and should in principal
be accompanied by a true multi-dimensional Euler solver; the latter are not well

developed. Recent progress by Harten and Chakravarthy (1991), however, seems
promising.

In order to bypass the problems in formally extending ENO to multi-dimensional
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problems, Shu and Osher (1988-1989) proposed the point-ENO method, which ap-

plies the ENO method to a series of one-dimensional problems. Their formulation is
considerably simpler although less rigorous than that of Batten and Chakravarthy

(1991). It has been successfully applied to the study of compressible free shear

layers by Shu et al. (1991). As a first step, the higher order scheme is implemented
without stencil switching because the boundary complicates the search algorithm

and has not been used in the point-ENO method of Shu mad Osher. Using an

upwind biased fixed interpolation makes it easier to accommodate the boundary
and has considerably less numerical dissipation in the boundary layer than a fully

upwind scheme. Due to the use of flux splitting, only second order accuracy can

be obtained at the boundary. The fact that we do not use the stencil switching

temporarily limits the code to flows without shocks.
In order to simplify the development of the numerical scheme, the method of lines,

which uncouples the spatial and temporal dlscretization, is used. The numerical

scheme consists of several steps. First, the flux vector is split into a positive and a

negative part, depending on the sign of the eigenvaiues of the Jacobian matrix of
the flux vector:

1 •
The positive and negative fluxes at i + _,3 are obtained using a fourth order in-
terpolation formula. The finite volume scheme, however, will always be formally

second order accurate, as can be easily checked by Taylor series expansion. The

fluxes, therefore, have to be corrected to obtain higher order accuracy in the total

scheme. Shu and Osher (1988) derived the following relation:

+ O(A 
= + ,,=,Ea ,,Ae"

--I
which makes the scheme ruth order accurate with coefficients, a2 = _, a4 =

7 This relation can be obtained using a Taylor series expansion about the5760 ' ....

point i,j. It has the great benefit of giving a conservative scheme, which converges
to a weak solution. This is not necessarily the case when fourth order differences axe

used. This relation is separately applied to the positive and negative flux vectors

by choosing separate polynomial interpolants p_+½ for E_+},j, yielding:

-+ .,. ,,,-, {' -
/

t,=l _,+½,i

+ O(A6'''+') (3)

i

Similar relations can be derived for the vector Gi,j+ _ .
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2.3 Implicit time integration

Time accuracy is crucial for direct simulations. Unfortunately, most implicit
schemes do not have this property. In an effort to improve time accuracy, Rai (1987)

proposed to use a Newton iteration to improve the time accuracy of approximate

factorization schemes. This was applied by Rai and Moin (1991) in their simulations

of bypass transition in a boundary layer at Mach 0.1. By recomputing the Jacobian

matrix, they reduce the approximate factorization error and increase time accuracy.

We do not use approximate factorization or ADI to solve the implicit matrix but
the zebra line Gauss-Seidel method. This method converges very rapidly (in two

to three iterations) and gives a solution of the full system of linear equations. We

do not need Newton iteration to remove the inaccuracy introduced by approximate

factorization, but because the Jacobian matrix is only approximated to first order

in the implicit part, we do not achieve time accuracy and lose the higher order
spatial accuracy of the scheme. Linearization of the equations with a higher order

implicit spatial discretization is not feasible because it requires a prohibitively ]arge

amount of storage. The Newton time integration method, therefore, is needed to
maintain time accuracy. It is obtained by including the flux vectors at time level

n _- 1 in Equation (2) and applying the Newton-Raphson iteration process. To save

space we only discuss the one-dimensional form:

aI ÷ JAr _ 0Ui+ ½J _P ) ) (Up+I _ Up) = _ T (UP, U,,, U,,-I,...)OU__ _ ,j

--p --p

(4)
Where T and a depend on the time integration method used. For instance, a first

order implicit time integration uses a -- 1 and

T(U', U = (U"- U
3

whereas as second order time integration uses a -- _ and

The flux vectors on the right-hand side of Equation (4) are approximated with the

higher order scheme, whereas the terms on the left-hand side are only approximated

to first order. By iterating the solution of Equation (4) and updating both the
implicit and explicit parts each time, we can reduce the error U p+I - U p to zero

and thereby obtain a higher order implicit and time accurate scheme. In practice

only a few iterations are needed.

Higher order time integration methods can be obtained by using higher order

difference approximations for 8u but their application becomes more complicated-6i-,
due to the number of time levels, which have to be stored. In two dimensions,
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we experimented with accuracy up to fourth order, but the results were not satis-

factory. Spurious modes, which arise in multi-level schemes, created instabilities.

The spurious modes arise because the characteristic polynomial of the time inte-

gration scheme has multiple zeros. A scheme which does not have this problem

is the implicit Runge-Kutta method, see for instance Gear (1971). It also has the

benefit of having 2m order accuracy with only m time levels, see Butcher (1964).
A fourth order implicit Runge-Kutta method, which uses only two time ]eve]s, is

currently being investigated as an alternative. It requires the solution of a large set

of non-linear equations and fits in naturally into the Newton scheme. However, it

doubles the number of non-linear equations compared with higher order multi-step
methods.

Another aspect of the Newton scheme is the fact that the boundary conditions

have to be implemented in a Newton form, This can be done straightforwardly

using the approach of Chakravarthy (1983). For the inviscid part of the flow field,
this procedure can be summarized as follows: Multiply the equations by the left

eigenvector of the Jacobian of the inviscid flux vector component normal to the
boundary. It is then possible to transform the equations from conservative to char-

acteristic variables. Retaining only the equations which relate to waves which leave

the domain and replacing the other equations with boundary conditions yields the

equations which have to be solved at the boundary with the Newton method:

etsu +-- + :0Bz

with: (GtS)h the k = 1,... ,q rows of the left eigenvector of the 3acobian of the

flux vector E related to outgoing waves; and (_--_)_°13and Bh the I = q + 1,... rn rows

of _ and the vector B related to the boundary conditions. A similar approach
can be followed for the viscous boundary conditions, but an ad hoc decision must

be made on which equations to replace by boundary conditions because there is no

theory equivalent to the characteristic approach for the inviscid equations available.

3. Discussion

The numerical scheme discussed in this report has been programmed and is cur-

rently being tested. The Newton scheme converges, but the residue reduces only
linearly instead of quadratically. This is because the implicit part only uses a first

order accurate approximation to the spatial derivatives, which are approximated

with higher order accuracy on the right hand side. Convergence problems, however,

sometimes occur due to the corner contributions; removing them requires additional

attention. Another problem which stiU is under investigation is point to point oscil-

lations which occur in low Mach number inviscid flow. These oscillations disappear

as soon as the viscous contribution is incorporated, even with a very low viscosity,

but they also should not occur at all The convergence of the Newton scheme is a

very good test of the code because it is very sensitive to any error in the code.
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4. Future plans

The present version of the code will have to be tested further, and work has

to be completed on the elimination of the weak instability. When the code is

operational, both spatial and temporal simulations of boundary layer transition

will be performed. The experience gained using the adaptive grid method in the
linear stability code will also be applied. It is expected that the increased accur_cy

of the DNS and linear stability code will be sufficient to perform DNS simulations

of transition in compressible boundary layers at reasonable cost.
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Effect of walls on the supersonic
reacting mixing layer

By D. S. Shin AND J. H. Ferziger I

1. Motivation and objectives

Most stability analyses of supersonic mixing layers have considered unconfined

shear layers. However, the supersonic mixing layers in ramjet combustors and most

experiments are confined by solid wails. Two distinct types of instabilities may

occur in confined shear layers. One is the Kelvin-Helmholtz instability found in
subsonic shear layers; the other is the acoustic instability. In low speed flows, the
effects of walls on the Kelvin-Helmholtz instability are relatively small so long as

they are separated by many shear layer thicknesses. However, in high speed flows,
some of the energy of the acoustic radiation that would leave an infinite system is
reflected from the walls. This reflection can alter the stability characteristics of the

flow significantly (Tam and Hu 1989; Greenough et al. 1989; Zhuang et al. 1990;

Morris and Giridharan 1991).
To include the effect of chemical reaction, we shall consider a reacting mixing layer

in a channel. The chemistry model is finite rate single step irreversible reaction with
Arrhenius kinetics. Laminar flows obtained by solving the compressible boundary-

layer equations (Shin and Ferziger 1991) are used as the basis for the stability study
because the confining walls hardly change the profiles of laminar flows (see Fig. 1).

All flow variables are nondimensionalized by their fast-stream values.
We shall consider the effects of heat release, Mach number, frequency, wavenum-

bet, thickness of shear layer, as well as distance between walls and direction of

propagation of the disturbance waves. We use non-dimensional adiabatic flame

temperature, T_d, to express the amount of heat release from combustion. Note

that for a given T_d, the actual temperature rise in high Mach number flows may

be higher than that of low Mach number flows because of viscous dissipation. How

best to express the temperature rise from the combustion and viscous dissipation

in a single parameter is still an open question.

2. Accomplishments

_.I InviJcid linear Jtability equation

We consider a spatially developing plane mixing layer in which the fuel and oxi-

dizer are initially unmixed. The flow is confined to a rectangular channel of height
2H and breadth B. We assume locally parallel mean flow and small wavelike distur-

bances propagating in z direction. Each dimensionless quantity can be expressed
as

F(z, y, z, t) = F(y) + F'(z, y, z, t) (1)

1 Stanford University.

#t
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FIGURE 1. Streamwise velocity. T=d=l, MI--6 (M2=3), T_=I, H--5. _ ,

without walls (boundary-layer equations); .... , with walls (full Navier-Stokes
equations).

where F(y) is the laminar flow quantity and F' is the disturbance.

At the walls, we could apply no-slip boundary conditions. However, the focus of

this study is on the shear layer, and the boundary layers are not be important so
long as they are much thinner than the Shear iayer and channel width. Hence we

allow fluid slip at the walls but no penetration. Furthermore, heat loss and chemical

reaction at the wails are excluded. Boundary conditions for the disturbances at the
sidewalls ( z=-F B /2) are, therefore,

Solutions for the disturbances which satisfy the above boundary conditions are
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assumed to have the form:

'U#

.Vt

W e

p,
T'

p,

 (y)cos(2m. /B)
_(y)cos(2m_z/B)
_,(y)sin(2m_rz/B)

 (y)cos(2m. /B)
T( y )cos( 2m_rz / B )

(m = 0,1,2,...) (3)

where a, m are wavenumbers in the streamwise and spanwlse directions, respec-

tively, and w is the frequency. The perturbation equations are derived by linearizing

the compressible Euler equations. Substituting Eq. (3) into the linearized governing

equations, we derive a second order ordinary differential equation for the pressure:

2a_'

'"- { (a___) _-_(au-_)s[RXNl]} "-

where -f is the specific heat ratio and M] is the Mach number of the upper stream.

[RXN1] and [RXN2] are terms that represent the effect of density wriation due to
chemical reaction and compressibility on the instability. The boundary conditions

at the top and bottom wails become

f(H) = f(-H) : 0 (5)

With these boundary conditions, Eq. (4) is solved by a combination of the shooting

and Newton-Raphson methods.

_.?, E_ect of walla

First, the effect of wall on the instability is examined. We begin by looking at the

two-dimensional waves (m=0) in the non-reacting flow (T_d=l) with H=5. Because

all length scales are nondimensionalized by initial vorticity thickness, H:5 means

that wall separation is five times the vorticity thickness, which is small enough to

permit interaction between the wall and unstable acoustic modes. Fig. 2 shows the
amplification rates and phase speeds as functions of frequency at Mach numbers

M1 =0, 2, 3. It shows that when the Mach number of the disturbance relative to

either free-stream, is subsonic (]Mr[ < 1), there is only one unstable mode, and its

phase velocity is about the average of two free stream velocities; we can identify
this as a Kelvin-Helmholtz mode. The amplification rate of this mode decreases as

the Mach number increases, just as in unconfined shear flows. The effect of walls

on these modes is weak.
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FIGURE 2. (a) Amplification rates and (b) phase velocities in subsonic relative
Mach number. Tod=l, m=0, H=5, T2=1. _, MI=0; .... , M1:2; --'-- ,

M1=3.
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When the relative Mach number is supersonic (IM,.[ > 1), there axe many su-

personic unstable modes; these are similar to the supersonic modes found by Mack

(1984) in boundary layers. These modes arise from reflection of acoustic waves

by the walls and do not exist without w_s. Fig. 3 shows the growth rates of
these unstable modes and the corresponding phase velocities at M1=6 and M2=3.

There are further unstable modes at higher frequencies; their amplification rates

are lower. The unstable modes can be classified into the three families found in

unconfined flows, the center, slow, and fast modes. The phase velocities of the fast

modes decrease as the frequency increases, while those of slow modes increase with

frequency. They all appear to approach the average of the two free-stream veloc-
ities. This behavior contrasts with what was found in unconfined flows, in which

the phase velocities approach the free-stream velocities. Each mode is unstable
only over a relatively narrow frequency band. For this set of parameters, the most
unstable mode is a center mode, but it is only sllghtly more unstable than one of

the outer modes.

For the reacting flow with TGd=4 and H=5, the two-dimensional amplification

rates and phase velocities at subsonic relative Mach numbers are shown in Fig. 4.

Fig. 4a shows the amplification rates of center and slow modes and Fig. 4b shows

the amplification rates of fast modes at three different Mach numbers MI=0, 2,

3. Fig. 4c shows the corresponding phase velocities. The amplification rates of
all modes decrease as the Mach number increases. The fast modes have smaller

amplification rates than their slow counterparts. When the relative Mach number
is supersonic, three families of modes are unstable. Fig. 5 shows the growth rates of
these unstable modes and the corresponding phase velocities for M1 =6 and M2:3.

Other unstable modes with lower amplification rates and higher frequencies are not
shown. The fast and slow modes have comparable amplification rates, while the

center mode is less unstable. Unlike the situation in non-reacting flows, neither

phase velocity approaches the average speed. Rather, the phase velocities of the

outer modes appear to be almost independent of frequency.

Because the walls change the characteristics of supersonic unstable modes from
those found in unconfined flows, the distance between the walls is an important

parameter. For two-dimensional modes, m=0, the growth rates are independent

of the aspect ratio of the duct, i.e. the breadth has no effect on the stability.
We calculated the properties of spatially growing waves at various values of H for

fixed upper stream Mach number M1 and fixed mean velocity and temperature

profiles. The instability behavior of the subsonic shear layer hardly varies with the
distance between the walls. However, the instability characteristics of supersonic

shear layers change considerably as height increases. Fig. 6 shows the maximum

amplification rates as functions of H at M1:6 (M2=3). The smallest H considered

is 5. We consider only the center mode for non-reacting flows (T,,_:I) and the slow

mode for reacting flows (T,d=4 and 8). The maximum growth rates of both the

non-reacting and reacting shear layers increase as the distance between the walls

decreases. As expected, reflection of acoustic waves by closely spaced walls prevents

radiation of energy and makes the flow more unstable. The effect is much larger in
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FIGURE 3. (a) Amplification rates and (b) phase velocities in supersonic relative

Mach number. Tad-_l, M]=6, M2=3, rn=0, H:5, T2:1.

the non-reacting case for which the maximum growth rate at H=5 is about twice as
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FIGURE 4. (continued) (c) Corresponding phase velocities in subsonic relative Mach

number. T,d=4, m=0, H=5, T2=l. _, -MI=0; .... , M1 =2; -----, M1 =3.

large as that at H=20. For T6_=4, the maximum growth rate at H=5 is about 1.4

times larger than that at H=20. When H is relatively small (H < 7.5), the non-
reacting flow (T,a=I) is more unstable than the reacting flow (Ted=4); the reverse
is true for large H (H > 7.5). For T_d=8, the maximum growth rate increases as
H decreases, but the change is small. This flow is more unstable than the cold flow

(T_d=l) and moderate heat release flow (Tad=4) at all H considered here.

?..$ Three-dimenaional modeJ

In partially confined-channel flows, w_ch have "no sidewalls, the disturbances are

of the travelling-wave form in the transverse direction (Shin and Ferziger 1991).
The only difference between partially-confined flows and rectangular-channel flows

is the boundary condition at the side walls, Eq. (1). We studied the growth rate of
three-dimensional modes in both types of flows. Because heat release favors the two-

dimensional instability, we considered only the non-reacting case (T_d=l); because

walls have little effect on the low-speed flow, only high-speed flows (M1 =6, M2=3)
were studied. Fig. 7 shows the amplification rates of the most amplified modes at

several angles for the case without sidewalls. The growth rates of three-dimensional

modes (0=70 °) are higher than those of two-dimensional modes (0=0 °). This result

shows the behavior similar to that of free shear layers (Shin & Ferziger 1991). Thus
the top and bottom walls favor three-dimensional instabilities when there are no
sidewalls.
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A rectangular channel might display three-dimensional instabilities due to reflec-

tions from the sidewalls. The transverse-boundary conditions (Eq. (1)) will allow
only integer values of the transverse wavenumber m. We investigated the three-

dimensional instability modes for both non-reacting (Tad--l) and reacting (Tad:4)
rectangular-channel flows. We chose 10 as the wall height. The breadth of the

channel B was 10 in this study. We studies two different Mach numbers, Ma=2

and 6 (Mz--1 and 3); the first is considered as a low-speed flow and the second, a
high-speed flow.

Fig. 8a shows the amplification rates for the non-reacting cases. We consider

only the center mode for non-reacting flows (Y6d----1) and the slow mode for reacting
flows (T..d=4) because they are the most unstable modes for the respective flows;
m--0 corresponds to two-dimensional modes and m=l to three-dimensional modes.

We found only damped modes for m > 1. In the low-speed flow (Ma =2), the three-
dimensional mode (re=l), for which the propagation angle of the most amplified

mode is 42 °, has lower amplification rates than the two-dimensional mode (m=0);

this is similar to what we found for unconfined flows. In high-speed flow (M1 =6), the

three-dimensional mode (re=l) has lower amplification rates and the propagation
angle of the most amplified three-dimensional mode is 70° . This result shows that
three-dimensional modes have lower amplification rates than two-dimensional modes

in high-speed non-reacting flows unlike unconfined flows. Thus side walls favor two-

dimensionality.

Fig. 8b shows the results for the reacting cases. For the three-dimensional modes,
the propagation angle of the most unstable mode is 48 ° at low-speed (M1 =2) and

46 ° at high-speed (Ma:6), respectively. However, the most amplified modes are

still two-dimensional (m:0), which is similar to the situation in unconfined reacting
shear layers. As a consequence, we consider only two-dimensional modes below.

?,._ Effect of Mach number and heat release

This section studies the effect of the Mach number and heat release on the max-

imum growth rates of instabilities in confined shear layers. The wall height is fixed
at 10. Fig. 9 gives the maximum amplification rate versus the upper-stream Mach

number and indicates that the maximum growth rate of the most unstable two-

dimensional mode decreases with Mach number in both non-reacting (T.d=l) and
reacting (T.d=4) flows. They appear to approach asymptotic values for MI > 4

or Mc > 1, where Mc is the isentropic convective Mach number defined by Pa-
pamoschou and Roshko (1988).

In the non-reacting case, there is little difference between the unconfined and the

confined flows when the isentropic convective Mach number is subsonic (M1 < 4).
When the isentropic convective Mach number is supersonic (M1 > 4), the reflection
of acoustic waves by the walls makes the confined flow more unstable than the

unconfined flow. At M1 =8, the maximum growth rate of the confined flow is about

four times larger than that of the unconfined flow. However, it is small (about 16%)
compared to the growth rate of the cold flow at Ma :0. The reacting flow shows

a similar qualitative trend. Heat release seems to reduce the compressibility effect

even more in confined flows; the ratio of the maximum amplification at M1 =8 to
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FIGURE 9. Maximum amplification rates versus M1. ra=O, H=5, T2=l. o, T,d=l,
unconfined; o , T_a=I, confined; ,, , T_d=4, unconfined; +, T.a=4, confined.

that at M1 =0 is about two, which is half of the ratio in the non-reacting flow.

Fig. 10 shows the effect of heat release on the maximum amplification rate of

unstable modes for low-speed (MI=I) and high-speed (M1 =6) flows. In the low-

speed flow, the walls make little difference. Heat release stabilizes the low-speed
flow; the maximum amplification rate for Tad=8 is about 15% of the cold flow value.

At M1=6, the confined flows are more unstable than the unconfined flows. When

H=5, heat release slightly stabilizes the flow for T,d < 4 but destabilizes for Tad > 4

(see Fig. 6). As the distance between the walls increases, the difference between the
confined and unconfined flow behavior becomes small. For H=20, the maximum

amplification rate increases as heat release increases, which is what happens in the

unconfined flow. The change of the maximum growth rate with the Mach number

is ]arge in cold flow (T_d=I); it becomes smaller as the heat release increases. The

effect of the walls on the growth rate becomes negligible at large heat release. At
high Mach numbers, the amplification rates change less with T_d than at low Mach

numbers; this is consistent with the behavior of the supersonic-ramjet combustors

(Drummond 1991, private communication).

_. 5 Eigenfunctions

This section studies contours of the flow variables derived from the most unstable

two-dlmensional eigenfunetions and the mean flow. The eigenfunctions axe normal-

ized so that the maximum absolute value of fi is unity. We chose H=5 in order to
include the effect of confinement. We considered only the center and slow modes;

the fast mode can be obtained by reflection of the slow mode.
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Fig. 11 shows the contours of various quantities produced by the supersonic

center mode for the non-reacting (Tad=l) flow at M1=6 (M2=3). The contours of

vorticity in Fig. 11a are qualitatively different from those for the corresponding
low-speed mode. The two elementary clockwise vortices of the low-speed cold flow

have been replaced by a single vortex in the center of the layer. The pressure
contours in Fig. 11b show clearly the radiative nature of the supersonic center

mode. Unlike the outer modes that radiate only to one free stream, the center

modes are supersonic relative to the both streams, and the associated compression

(solid llne) and expansion waves (dashed llne) propagate toward both boundaries.

The patterns of compression/expansion waves in Fig. 11b suggest that the waves

are reflected by the walls. The reflections carry energy back to the shear layer,
producing feedback that makes confined shear layers more unstable than free shear

layers. Mack reported a similar observation for boundary layers (1984).

From the pressure contours, we measured the Mach angle p and estimated the

convective Mach number Mc based on the most unstable mode (Mack 1975, Zhuang
et al. 1990) from

1

Mc= sin-- (6)

Measurement of the Mach angle from Fig. llb gives about p=40 °, from which we
estimate the convective Mach number to be approximately 1.55. The convective

Mach number based on the phase velocity of the most unstable mode is 1.49; this

agreement is considered to he very good.
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FIGURE 13. Contour plots from linear eigenfunctions of the reacting confined flow
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Figs. 12-13 show contours for non-reacting and reacting supersonic slow modes at
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M1 =6 (3'/2 =3). The patterns axe similar to those for the corresponding unconfined

flows except for the pressure contours. The latter again show reflections of com-

pression/expansion waves propagating at Mach angle p=27 ° for the non-reacting
flow and p=26 ° for the reacting flow. The convective Mach numbers according to

Eq. (6) are 2.20 for the non-reacting flow and 2.28 for the reacting flow, while
the convective Mach numbers based on the corresponding most unstable modes axe

2.22 and 2.33 respectively; the agreement is again very good. The contours of the

reactant concentrations in Figs. 13c-d show that the slow mode principally affects

the oxidizer because the oxidizer occupies the lower part of the layer. The fuel
distribution is hardly perturbed, so the supersonic slow mode will not yield much

mixing between reactants in confined reacting flows.

t.5 Streakline:

A strealdlne is a Hne connecting the current positions of the fluid paxticles that

have passed through the same point. Smoke or dye injectors allow one to visualize

streaklines experimentally. In this subsection, we calculate streaklines from the

lineax stability eigenfunctions. The velocity components of the disturbed sheax
layer, u and v, will have the form

= a(u) + " = (7)

The position of a particle at time t, (z(t),y(t)), can be calculated from

dz dy
d-7= d-7= (s)

We calculate a pathllne with the initial conditions

• (t0) = ,0, y(t0) = y0 (9)

In our calculation, we chose a=0.0005 and t=0 and considered the most unstable

two-dimensional modes. Strealdines for confined flows at high Mach numbers MI =6

(M2=3) axe given in Fig. 14 for both cold (T,a=l) and reacting (T_d=4) flows. Only
the center and slow modes axe shown; the fast mode can be obtained by reflection of

the slow mode. In contrast to the behavior of the low-speed cold flow, the streakllnes

of the non-reacting center mode in high Mach number confined shear flows do not

indicate roll-up, which suggests that the coherent structures might not be produced

and that mixing between the fuel and oxidizer will not be active. As in unconfined

flows, the slow mode primarily disturbs the lower part of the mixing layer, leaving
the upper part mostly undisturbed. The reverse is true for the fast mode. Thus the

outer modes in confined supersonic mixing layers do not cause roll-up, and mixing

between the fuel and oxidizer will not be strong.

3. Summary

In this work, we considered the inviscid stability of the confined compressible

reacting mixing layer using lamlnar-flow profiles generated from solutions of the
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FIGURE 14. Streaklines for the confined shear layers at M1:6 (M2:3). (a) non-

reacting center mode (Tad:l) (b) non-reacting slow mode (Tad:l). Tz=l, ra=0,
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FIGURE 14. (continued) Streaklines for the confined shear layers at M1 =6 (M2 =3).
(c) reacting slow mode (Tad=4). T2=l, m---0, H=5.

compressible boundary-layer equations with finite rate chemistry. We found that

reflection of supersonic disturbances by the walls makes the mixing layer more un-
stable than the unconfined free shear layer. Decreasing the distance between the

walls makes the flow more unstable. Subsonic disturbances are relatively unaffected

by the walls. The most unstable supersonic disturbances are two-dimensional in

both the partially confined and rectangular channel flows. Heat release and Mach

number hardly change the maximum growth rates of supersonic disturbances. The
growth rate of the supersonic mixing layer is very small compared to the corre-

spondlng incompressible mixing layer value. The supersonic center mode radiates

into both boundaries, whereas the outer modes propagate only to one boundary

with respect to which they are supersonic. Pressure contours show the reflection of

compression/expansion waves that propagate at the Mach angle. The reactants are

not strongly mixed by supersonic instabilities because they disturb mainly one side
of the layer.
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Direct numerical simulation of instability
and noise generation of hot jets

J
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By M. C. Jacob

1. Motivation and objectives

Hot jets offer a wide range of applications in flows of practical interest. The study

of their aerodyna_ca] and aeroacoustical properties is, therefore, a major field in

fluid mechanics. Despite the considerable amount of work on this topic, many ques-

tions remain unanswered since analytical models give but a rough description of

these complex flows. This holds in particular for the region in which disturbances
of the upstream laminar flow interact non-linearly: only the onset of these insta-

bilities has so far been successfully modeled under restrictive conditions (Huerre &

Monkewitz (1990)). In practical situations, jets are always more or less excited by

upstream perturbations (internal turbomachinery flow, pre-existing turbulence...)

which deeply affect the entire flow. The study of jet instability is, therefore, an
important issue for engineers. Besides that, acoustic far-field measurements indi-

cate that the instability region of a jet produces most of its noise. A quantitative

prediction of the sound production requires a precise knowledge of the flow (e.g.

LighthiU's theory requires at least the whole field: poO2uiub/OziOzj for an incom-

pressible isentropic and inviscid flow ). Since theoretical models are not accurate

enough for such complex flows and experiments do not provide the required data,

Direct Numerical Simulation (DNS) is an appealing tool for this purpose.

I.I. Instability of heated jets

Hot jets are of special interest since the nature of the instability they undergo

depends on their temperature as shown in the experiments of Monkewitz & Sohn

(1986), Yu & Monkewitz (1989), and Monkewitz et al. (1990). This change is
mainly due to the subsequent density variations rather than to purely thermal

effects (Sreenivasan et al. (1989)). The experiments show that below a certain tem-
perature, there is no major difference with a cold jet: perturbations obtained by

external forcing are amplified as they are convected downstream until they saturate

and eventually decay. This cycle corresponds to the roll-up of vortical structures

at the forcing frequency and their breakdown. The amplification of these pertur-

bations is maximal if the preferred mode is excited (Crow & Champagne (1971)).
This type of instability is referred to as convective instability because the pertur-

bations are washed out by the flow whenever the forcing is stopped. If the jet is

heated above a certain threshold, the flow switches to another type of instability in

which it becomes independent of the external forcing level. This suggests that self-
sustained modes settle in the jet, which behaves as an oscillator, and the instability

is, therefore, called an absolute instability. Experimentally, this type of instability
is characterized in three ways:
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1. it needs no external forcing in order to reach the excited state,

2. peaks in the perturbation spectra at the Strouhal numbers of the preferred mode,

and their subharmonics are much sharper than in the convectively unstable case,

3. after a sudden breakdown at the end of the transition region, the jet spreads
spectacularly, and intermittent side jets can be seen downstream as well.

The first two points are successfully predicted by the linear stability analysis
whereas the underlying mechanisms of the observations described in the last point

are investigated in current studies (Martin & Meiburg (1991)): the side jets seem
to be related to the saturation of azimuthal instability waves. The classical stabil-

ity theory depicts three kinds of parallel flows: stable, convectively unstable, and

absolutely unstable flows (the latter are defined as flows allowing waves to grow
both downstream and upstream). This classification holds only for parallel flows.

Recent studies (Gaster et al. (1985), Huerre & Monkewitz (1990)) have attempted
to relate these stability concepts to global properties of weakly non-parallel flows

in assuming the latter to be locally parallel. These studies generalize an analyt-
ical approach introduced by Cfighton & Gaster (1978) for convectively unstable

flows. According to Huerre & Monkewitz (1990), local absolute instability is a nec-

essary but not sufficient condition for the flow to be self-excited. The oscillatory

state can only be reached if there exists a "pocket of absolute instability", that is,
an interval of streamwise locations at which the flow is locally absolutely unsta-

ble. Another necessary condition of the same type as the local absolute instability

criterion can be expressed for the streamwise variation of the resonance frequency.
Comparisons with experimental results show that the local absolute instability limit

almost matches the limit of the global self-excited state (Monkewitz et al. (1990)).
Nevertheless, there is no theoretical mean to define exactly the self-excitation char-

acteristics only from the local stability concepts, even with simplifying assumptions.

Thus many questions remain unanswered about the stability of jets:

1. Why does heating change the stability of a jet flow?

2. How does a feedback mechanism take place in a self-excited jet?

3. Which mechanisms could explain the spreading and the intermittent effects in
self-excited jets?

1._. Noise o[ ezcited jets

1._.I Cold jets

Related studies for low Mach-number jets indicate that the large scale structures
of the instability region are mainly responsible for jet noise, whereas turbulence ac-

counts only for background broadband noise. In experiments, unforced jets are actu-

ally excited by preexisting turbulence (carried along with the incoming flow). This

accidental broadband forcing excites modes of different frequencies with a random

phase which produce a significant broadband noise. Thus turbulence acts indirectly

on the sound generation by randomizing the production of large scale structures.

Hence forcing can either affect the broadband noise (Moore (1977),Laufer & Yen

(1983), Jure (1985)) or amplify discrete frequencies of the acoustic field (Crow &
Champagne (1971)), depending on experimental conditions. This can be explained
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by the fact that even though forcing amplifies only structures of a given wavelength,

their spatial evolution still undergoes a randomness because of the background tur-

bulence. Eventually, the relative importance of this randomness with respect to the

wavelength determines how much the discrete frequencies are covered by broadband

noise. If the preferred mode is excited, the amplification of large scale structures

reaches a maximum _ccording to experimental stability analysis (Crow & Cham-

pagne (1971)). Another unexpected experimental resnlt can be explained by this

mechanism: the quadrupo]ar sound sources are located at a fixed distance from the

nozzle which is determined by the spatial evolution of the most excited instabilities

(Lanfer & Yen (1983), Juve (1985)), unlike the unforced case where eddies pair at

varying downstream positions. An attempt to model these mechanisms was made

by Ffowcs Williams & Kempton (1978) : assuming that the non-linear saturation of

instability waves or, equivalently, the first downstream vortex pairing dominates the

sound generation, they modeled the effect of background turbulence by a random-

ness in the phase or, equivalently, in the streamwise location of the corresponding

source. Despite their physical simplicity (the pairing mechanism is not modeled),

the two models of that study confirm qualitatively experimental observations. How-

ever, a quantitative noise prediction is not available, and the models fall to predict

the high frequency radiation because details of the transition flow are not modeled.

I._._ Hot jetJ

Theoretical studies of sound generation in hot jets focus on the effects of the

resulting density inhomogeneity. First a correction on cold jet noise due to wave

refraction by transverse density variation was found (Mad (1974)), then additional

source terms resulting from density gradients where considered (lV[anl (1976)). Re-

suits agree qualitatively with experiments on convectively unstable heated jets. This

could be expected because cold jets are also convectively unstable: since sound ra-

diation is strongly dominated by the dynamics of instabilities, the underlying mech-

anisms of noise generation are essentially the same for all convectively unstable jets.

Thus their flows have the same structure when they are heated in the domain of

convective instability. However, this theoretical approach does not hold for flows

which are deeply affected by heating such as excited or self-excited jets. Their large

scale structures modify notably the mean flow profiles on which Mad's model relies.

For excited convectively unstable jets, the dominant sound sources are expected to

be the same as for cold jets; but modifications due to density gradients might signif-

icantly change the acoustic far field (according to Mani's results). Studies related

to self-excited jets focus on the near-field pressure. As pointed out earlier, the large

scale structures are not perturbed by background noise, and the pressure spectrum

is, therefore, dominated by peaks about the frequency of the preferred mode and

its subharrnonic (Monkewitz et al. (1990)). From these results, a similar shape

might he expected for the far-field. However, the contribution to sound generation

of other typical flow patterns (such as side jets) are not known so far because their

mechanisms are not yet fully understood.
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1.3. Objecti_eJ

The goal of the current investigation is to numerically simulate convectively and

absolutely unstable jet flows in order to give a new insight into the underlying mech-
anisms of jet instabilities and their contribution to sound generation: DNS codes

available at CTR solve the compressible Navier-Stokes equations and provide a very

accurate flow representation. In different simple configurations, they have even been

able to simulate sound radiation and scattering (without any acoustical analogy or
approximation) (Co]onius etal. (1991), Mitchell etal. (1992)). An application of

these codes to heated 2-D jets has been started in this study and modifications have
been made in order to allow for a temperature dependant viscosity.

2. Accomplishments and current work

_.I. The numerical _cheme

As pointed out by Monkewitz et al (1990), the experimental study of convective

and absolute instability requires a'clean' facility (background noise and inflow per-
turbations including turbulence intensity should be minimized) in order to control
the forcing of the jet. These parameters are difficult to control. In a numerical
approach, the equivalent condition is to minimize the numerical noise. Since a di-

rect simulation of sound generation is planned as we]], numerical noise has to be

negligible even compared to the sound field: considering the small amplitudes of

sound waves (the Sound Pressure Level reference is by definition: 0.2x 10-SPa), the
constraint on numerical approximation is extremely severe. Differencing schemes

used in recent codes fulfill this requirement in the computational domain: the 2-D

unsteady compressible Navier-Stokes equations are solved with a sixth order gener-

alized Pade scheme for spatial derivatives and a fourth order Runge-Kutta scheme
for time stepping (Lele (1990)). The main difficulty lies in the boundary conditions
which need a particularly careful formulation at the inflow and outflow boundaries.

A version of the scheme with most accurate boundary conditions is used in order

to calculate the sound generated by the flow (Co]onlus etal. (1991)).

_..?.. Non-reflecting boundary conditions

The common way to express boundary conditions is to determine the character-

istics of the governing equations at the boundary. In our case the field is thus split

in four waves (an acoustic wave, an entropy wave, and two vorticity waves). The

boundary conditions are then obtained by cancelling the incoming waves, whereas
the outgoing waves are computed from the interior field via one sided differences.

Two different approaches found in the literature:

_. _..1 One-dimenJional boundary condition8

One-dimensional boundary conditions were given by Thompson (1989) for the
Euler equations and modified by Poinsot & Lele (1989) for reacting compressible

viscous flows. They rely on a characteristic decomposition of the field equations

in the direction which is normal to the boundary. They are underspecified at the

outflow, and the solution drifts unless the pressure at infinity is used to specify the
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incoming wave. Their adwntage is that they have given satisfying results in many

situations (Poinsot & Leie (1989)), and their relative robustness lies in the fact that
they are expressed for the field variables: no lineaxization of the flow field is implied

in their formulation. As a counterpart, they reflect oblique waves. Consequently,

these boundary conditions are not suitable for DNS of acoustic waves, and even for
the study of jet stability their accuracy is questionable.

?,.P..2 Two-dimenJional boundary condition_

Another formulation has been derived recently by Giles (1990) for turbomachinery

flow and adapted to external viscous flow by Colonius et al. (1991). It is based on

two approximations. The first is a small perturbation assumption which allows the

flow field equations to be linearized. The perturbations are Laplace-transformed in
time and Fourier-transformed in the tangential direction. The characteristic analysis

leads to boundary conditions for each Fourier-mode and are written as orthogonality

conditions between the perturbation field and the left eigenvectors of the incoming

waves. Since the Fourier and Laplace transforms cannot be performed at each time

step, the left eigenvectors are expanded to the first order in Taylor series of the

spatial wave number. This second approximation allows the boundary conditions
to be expressed as a first order PDE in time and the tangential coordinate. In

order to obtain a well-posed problem, the incoming wave at the outflow has to

be specified with respect to the pressure at infinity in a similar way as for the
Thompson boundary conditions. Furthermore, an analogous condition involving

a reference streaxnwise velocity has to be specified on the outgoing waves at the
inflow.

This formulation gives thus a first order approximation of the exact two-dimen-

sional boundary conditions (a zeroth order approximation gives one-dimensional
boundary conditions which are different from the Thompson boundary conditions

because of the underlying linearization).

_,.3. Current testings

The two-dimensional non-reflecting boundary conditions have so far been success-

fully tested on model problems (Colonius et al. (1991)). In these model problems,
the boundaries were fax from the main aerodynamic perturbation: thus the bound-

aries were not crossed by the flow as they axe for jets, and only the non-reflection

of acoustic and entropy waves was tested. Thus the question arises whether or not

they are adapted to such cases.

]L3.1. Zero-circulation vortez

In order to answer this question, we have simulated the case of a vortex with

zero circulation which is convected by a plug flow. First we considered the case of

a slowly rotating almost incompressible vortex (core radius: 3.0, strength: -0.01;

all variables are scaled with respect to the ambient sound speed and a length which
measures the vorticity thickness in shear-flows and is one fortieth of the box size in

the present calculation) convected by a parallel flow (Mach number: 0.05, Reynolds

number: 6,667 (based on core radius and background velocity) ). The maximum
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FIGURE 1. Single vortex: Time evolution of maximal vorticity. The vortex leaves

the domain at Time = 400 (one flow-through Time is 800). Strength = -0.01(Solid

llne); = -0.5 (dotted llne).

tangential velocity is 0.002 (twenty five times smaller than the convection velocity).

The vortex which is initially in the center of the domain induces a small pertur-

bation to the mean flow. When it leaves the domain, acoustic waves are reflected

at the outflow which generate perturbations at the inflow. These are convected to

the outflow one flow-through time later. This explains the stepwise decrease of the

vorticity in figure 1 (for the case; strength = -0.01). Figure 1 shows also that the re-

flected perturbations are small with respect to the initial vorticity. Thus the steady

state is reached within a good approximation after this transient phase(numerical

noise is 106 times smaller than the initial perturbation). However, the numerical

noise generated at the outflow increases along with the vortex-strength until the

outflow boundary acts as an amplifier. If the initial vorticity which is considered

as a perturbation in the formulation of the boundary conditions is too strong, the

outflow generates even larger perturbations, and the computation eventually blows

up. This behavior is shown in figure 1 for the case where the strength of the pre-

vious vortex is increased to -0.5, giving a tangential velocity of 0.1. In this case,

the vortex induces a reverse flow which has the same speed as the background plug

flow. It can be seen in figure 1 that when the vortex leaves the domain, the bound-

sty conditions generate a vortical perturbation which is almost 1.5 times stronger

than the natural vorticity at the outflow. This instability at the boundaries is due

to the formulation of the boundary conditions: the linearization of Navier-Stokes

equations does not hold for large perturbations. The point is that the equations

are linearlzed with respect to the initial field, and, therefore, the whole vortex is

considered as a perturbation when it reaches the outflow even though it does not

fluctuate in a convected fra_me (except from a slow viscous decay). In our latter
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computation, the perturbation field when the vortex reaches the outflow is, there-
fore, of the same order of magnitude as the unperturbed field. Hence the boundary

conditions are unstable for large perturbations. Theoretically, this could be avoided

by changing the reference flow during the simulation under the assumption that the

large scale perturbations of the flow are much slower than the characteristic waves

(Colonius et al. (1991)). Unfortunately, such a treatment is only possible if these
large scale perturbations are known a priori, which is not the case for, say, a jet

flow. Another reason for this instability might be the fact that the stronger vortex

is responsible for negative local streamwise velocities and that the corresponding

boundary conditions at the outflow should become temporarily inflow boundary

conditions. This might indeed be one reason, but it is surely not the only rea-
son because we tried to switch to the proper type of boundary conditions (inflow

or outflow) according to sign of the streamwise velocity, and this would not solve
the problem. Another reason is given by results of recent tests (Colonius personal

communication) which showed that the amplitude of reflected waves is proportional

to the square of the vortex strength. This suggests that numerical noise at the
boundaries is dominated by non-llnear effects, that is, linearization errors. Our first

assumption is thus confirmed.

_.3._. Laminar jet flow

The conclusions drawn from the case of a single vortex have deep consequences

on our jet simulations for two reasons:

1. we want to investigate unstable flows which are by definition subject to strong

perturbations (this is particularly true for jets),

2. the jets are surrounded by still fluid; thus even perturbations that are relatively

small compared to the jet flow will be strong with respect to the background flow.

Tests indicate indeed that initial transients create perturbations which are strong

enough to blow up the computation. For this reason, we chose another approach,
which is to simulate co-flowed jets, that is, jets surrounded by fluid with positive

streamwise velocity. Hence the perturbations carried by the jet become smaller with
respect to ambient fluid motion. Of course, the jet stability is increased by a co-flow

(for a given centerline velocity, the shear is reduced). Thus our goal is to find the
minimal necessary co-flow. Our tests concern 2-D jets with an inflow top-hat profile

given by Yu & Monkewitz (1989), the temperature profile being related to the latter

by the Crocco-Buseman relation. The centerline velocity is 0.4 (in the Much scale)

and the Reynolds number is 1250 (based on shear-layer thickness and centerline

velocity). The jet diameter is about 10 shear-layer thicknesses). According to results

on shear-layer simulations (Buell et al. (1990)), the minimal co-flow should be about
one fifth of the maximal velocity. We tested three co-flows with Much-numbers of

0.05, 0.1, and 0.2. The first blew up after two flow-through times, whereas the two

others converged. It can be seen in figure 2 (which shows the space averaged rms

values of the time derivatives versus time, scaled with the vorticity-thickness and

the ambient sound speed) that the convergence is very slow for the intermediate
case which is probably very close to the stability limit of the boundary conditions.

According to figure 2 and to the conclusions from the previous subsection, there
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are obviously two reasons for this behavior: The first is that perturbations grow

as the co-flow decreases (more shear), and thus reflected waves generate stronger

perturbations in the flow. The second is that the convection velocity is reduced

along with the co-flow, and it takes, therefore, more time for the perturbations to

reach the outflow. For the first perturbation set, this makes only a slight difference

because it is convected by the shear-layer roughly at the average velocity (0.25 and

0.3 for the two fastest co-flows), whereas the perturbations due to waves reflected by

the outflow affect mainly the co-flow (where their relative amplitude is the highest)

and are, therefore, convected at the co-flow velocities. In the fastest case, these

distinctions do not appear very clearly because these different velocities are very

close, and the reflected waves in the co-flow are not dominant. In the intermediate

case, however, these distinctions become obvious. These tests confirm the necessity

of a co-flow in the simulation of jets, and from our first tests on heated jets, it seems

possible that the minimal co-flow is faster for hot jets, thus making the study of

self-excited jets even more difficult.

i

7

3. Future plans

The conclusion from our preliminary study is that the obliquely non-reflecting

boundary conditions are appropriate for the DNS of jets as long as the perturbations

remain small with respect to the initial conditions. Therefore, in our future work,

we will go further into the study of co-flowed jets which has recently begun.

Since the co-flow has a stabilizing effect, we will have to determine under which

conditions the self-excited state might be reached. This question will be addressed

in the near future by a linear compressible stability analysis of jets with different

co-flows and different temperature ratios. This will predict the limit of absolute

instability and give the necessary eigenfunctions for the forcing in the convectively

unstable case.

Another necessary step toward DNS will be to improve initial conditions by com-

puting a steady laminar jet flow (in our computations, we merely translated the

inflow profile through the domain). Thus we will reduce the amplitude of the tran-

sients and hence increase the stability of the boundary conditions.

Then we will use the results of the two previous steps for the DNS of convectively

and absolutely unstable jets. At that point, we may even use the flow-field data

in order to test aeroacoustic models. A prediction of acoustic far-field relying on a

complete data set of the flow-field would be a great step for acoustics.

Finally, we will consider the DNS of acoustic fields. These could be compared to

the results from the previous calculations.
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Mixing measurements of
straight and curved shear layers

By P. S. Karasso AND M. G. Mungal

1. Motivation and objectives

The structure of shear layer flows at high Reynolds numbers remains a very inter-

esting problem. Straight mixing layers have been studied [Konrad, 1977; Kooches-

fahani _z Dimotakis, 1986; Fiedler, 1974] and yielded information on the probabil-

ity density function (pdf) of a pasive scalar across the layer. Konrad, 1977, and

Koochesfahani & Dimotakis, 1986, measured the pdf of the mixture fraction for mix-

ing layers of moderate Reynolds number (Re) of about 25,000 (Re based on velocity

difference and visual thickness). Their measurements showed a "non-marching" be-

haviour of the pdf (central hump which is invariant from edge to edge across the

layer), a result which is linked to the visualizations of the spanwise Kelvin-Helmholtz

(K-H) instability mode. Similar measurements at higher Reynolds numbers remain

an open question: a "marching" behaviour of a passive scalar pdf at higher Re

(Batt, 1977) suggests either resolution problems of the measurements or a change

in the physical mechanisms of entrainment and mixing with increasing Reynolds

number. Our work seeks to address this issue. Finally, the shear layer is known to

be very sensitive to its initial conditions, which vary with different facilities.

A secondary instability mode, the Taylor-GSrtler (T-G) instability, which is as-

sociated with streamwise vortical structures, has also been observed in shear layers

[Breidenthal, 1978; Lasheras & Choi, 1988]. In shear layers curved in the stream-

wise direction when the high-speed stream is on the inside of the bend, the T-G is

enhanced, whereas when the high-speed stream is placed on the outside of the bend,

the T-G is suppressed, thus providing an environment for studying the outcome of

the competition of the K-H with the T-G instability modes. Mixing enhancement

may occur in a curved layer that enhances the T-G mode [Plesniak & Johnston,

1989]; also, the layer appears to grow about 50% thicker with an enhanced T-G

mode [Karasso & Mungal, 1989]. The present work will document changes to the

pdf when streamwise curvature is present.

In the present study, we are interested in measuring the concentration pdf of

mixing layers spanning the Reynolds number regime from 25,000 to about 90,000.

The studies will occur in curved as well as straight layers so that firm conclusions can

be reached about the effect of the two instabilities on the development of mixing

layers and the effect of curvature on mixing efficiency. Finally, the issue of how

resolution affects the outcome of a pdf measurement will be addressed via chemical

reaction techniques and via relative resolution changes of acquired data.
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2. Accomplishments

?..I Ezperimcntal facility

The facility used is a blow-down water channel described in Karasso & Mungal,

1989. It is capable of achieving a high-speed stream velocity of 2 m/s, translating
to a Re .._ 90,000. The nominal speed ratio between the two streams is 4:1 but can

be changed to any other ratio, thus allowing us to duplicate running conditions of
other experimental facilities.

_.I_ Ezperimental technique

The planar laser-induced fluorescence technique (PLIF) is used to acquire well-

resolved quantitative images of the concentration field. The low-speed stream is

marked with a fluorescent dye (sodium fluorescein). A very thin (approximately 300
micrometers) laser sheet is generated from a 1.5 W Nd:Yag laser. The fluorescence

signals produced are recorded on a 2-D CCD array (Amperex or Cohu). The images
are then acquired and stored on a 386 compatible computer. About 100 images are

acquired from each run-condltion, which are then processed and treated statistically
to obtain the pdfs across the layer.

?..5 Calibrationa and reaultJ

The choice of using a pulsed laser was made on the basis of improving the tempo-
ral resolution of our measurements. Each pulse has a duration of about 10 ns; the
fluorescence lifetimes are approximately of the same order. The smallest fluid me-

chanics scale is on the order of microseconds; hence our images can be characterized
by superior temporal resolution.

CW lasers have been used in the past with the same fluorescent dye: for those

systems, calibrations of the fluorescence signal intensitywith dye concentration (the
quantity that is ultimately measured) exist. For our system, no such calibrations

exist. Furthermore, since the peak power density of the present laser is orders of

magnitude greater than that of CW lasers, the properties of the dye as a function

of laser energy must be accurately measured. The latter is also necessary since the

laser sheet that is formed has a Gaussian fall-off of intensity from its middle portion
to the edges.

Calibrations of fluorescence signal vs. dye concentration have been made at a

given laser energy level. Figure 1 shows that the response is linear, at least for the

range of concentrations that we will be implementing in our studies. Light absorp-
tion and camera noise considerations will determine the final optimum maximum
concentration [Pringsheim, 1949].

Energy calibrations axe more difficult. The signal change along a line depends
on absorption and on energy response. Furthermore, erroneous conclusions could

be reached if photobleaching occurs, especially if it is exactly proportional to dye

concentration for the range of concentrations that are being examined. At this point
we axe conducting multiple tests in that direction to discern the various effects. It

is almost certain that at high energies the fluorescence signal is not linearly related

to energy; this is not a problem though if absorption is ruled out. At lower energy,

i

Z
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linearity seems to prevail. The final answer on th/s issue will occur in the very near
future.

Preliminary runs of the straight layer have been made. A typical image is shown

in figure 2. Flow is from top to bottom, and the actual size of the imaged region

is 5x7 cm. A perpendicular cut through the structure shows the intensity distri-

bution across the layer (figure 3). The strong ramp from one side to the other is

counterintuitive to the idea of a non-marching pdf. A streamwise cut is depicted in

figure 4. More of these cuts for various Re must be obtained for fair comp_sons.

A first attempt of calculating the concentration pdf for the case of Re -- 40,000

has yielded a marching type pdf. However, We a_ not sufficiently sure of this result

until all outstanding calibration issues have been resolved.

Once our pdf measuring technique is firmly established, we shall be measuring

the pdf for the straight layer from low to high Re. These pdfs will then become

the comparison for similar measurements for the two cases of the curved layer. It

should then be possible to provide quantitative measures of the changes to mixing

that result from the competition between the T-G and the K-H instabilities.

3. Future plans

The future plans for this experiment include: i) The completion of the current

measurements for comparing the straight to the curved layers, ii) The use of chem-

ical reaction techniques (acid-base reactions that create a threshold for fluorescence

to occur) to accurately specify the amount of product in the mixing zone and al_

to examine the effects of resolution on all of the above measurements, iii) The effect

of the initial momentum thickness on the development of the shear layer. This will

be effected by tripping the boundary layer on the splitter plate at the high-speed

stream.
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Progress toward identification of streamwise
vorticity meander in a plane mixing layer

z_

By R. L. LeBoeuf

The main objective of the current project, started in September 1991, is to exper-

imentally investigate streamwise vortical structures in mixing layers. This research

program is intended to clarify whether the observed decrease in mean streamwise

vorticity in the far-field of mixing layers is due primarily to the "smearing" caused
by vortex meander or to diffusion. While preparations for the experiments were un-

derway, the effects of vortex meander on the velocity statistics of a nominally linear

array of simulated inviscid line vortices were examined. The two-point transverse
velocity cross-correlations were deemed potentially useful for the identification of

streamwise vortex meander in a plane mixing layer. Comparisons of these results

to forthcoming simultaneous two-point cross-wire measurements in a plane mix-

ing layer should shed some insight into the kinematics of mixing layer streamwise
vorticity.

1. Motivation and objectives

An extensive data set consisting of single-point mean and turbulence statistics

has been obtained for a two-stream mixing layer generated in the Mizing Layer
Wind Tunnel (see for example Bell & Mehta 1991). The plane unforced mixing

layer was examined in order to quantify the development of streamwise vorticity

which previously was identified only through flow visualization studies (e.g. Bernai

& Roshko, 1986). The mean streamwise vorticity derived from the mean velocity
field shows a continuous decrease with streamwise distance from its nearfield occur-

rence. It is unclear whether the decrease in mean vorticity is a result of diffusion

of the streamwise vorticity or due to meander of concentrated vorticity. Based on

comparisons with forced streamwise vortex meander in a boundary layer, Bell &

Mehta (1991) argued that the decrease of the mean vorticity in the far-field mixing

layer is a result of diffusion.

Townsend (1976) showed that the governing equations for a free-shear flow admit
self-preserving solutions for sufficiently high Reynolds numbers. The resulting "self-

similar" mean and Reynolds stress profiles become functions of single length and

velocity scales. Previous measurements have indicated that the streamwise vorticity

persists even in what would normally be considered the "self-similar" region (Bell &

Mehta 1991) (where a linear mixing layer growth rate and asymptotic peak Reynolds

stresses were achieved). The peak streamwise vorticity and the secondary shear

stress (_--_), which was strongly correlated with the streamwise vorticity, were found

to exhibit significant levels in this region, (although they decreased with streamwise
distance to levels comparable with the noise threshold, Bell & Mehta 1990). It is

important for the establishment of the criteria for "self-similarity" to investigate
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whether the measured decay is due to true diffusion of the streamwise vorticity

or is an artifact of meander. In addition, this assessment will have important
implications regarding the ability of the layer to enhance mixing and reaction rates
in the far-field.

To resolve the questions regarding the persistence of streamwise vorticity in the
far-field, it was proposed to perform two-point cross-wire measurements of the ve-

locity field (Bell 1990). The facility and flow conditions of Bell & Mehta (1991)
will be used for the current study. A complete description of the facility was given

by Bell & Mehta (1989). The existing 3-D traverse used previously to position one

cross-wire probe will be used in conjunction with a 2-D traverse which was recently
designed and fabricated. While the new hardware and software were being prepared,

a preliminary study of two-point "measurements" of a simulated line vortex array

was used to determine the usefulness and characteristics of a velocity correlation to
be used for the identification of vortex meander.

2. Accomplishments

It was suggested by Bell (1990) that the correlation

R,,(Y, z,,.)= z).(Y,z + .) (1)

could be used for the unambiguous identification of streamwise vorticity in the

presence of meander. In order to test this hypothesis, Rw(O,Z,r) was computed
for simulated ideal line vortices. Twelve vortices with circulation and mean positions
matched to the data of Bell & Mehta (1989) for the station 77.6 cm downstream

of the splitter plate trailing edge were used for the simulation. The mean vortex

centers and circulations found by Bell and Mehta (1989) for this station are listed

in Table 1. The measured mean streamwise vorticity distribution is shown in Fig. 1.
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Table 1.

1989).

Vortex (cm)
1.0

(cm)

-15.0
r/ue (cm)

0.056

2 -0.5 -12.5 -0.246

3 0.0 -10.0 0.161

4 1.0 -8.0 -0.176
5 0.0 -5.5

-3.0

0.5
2.0

0.166
-0.231

2.0

7 -0.5 0.138

8 1.0 3.0 -0.151

9 0.0 5.5 0.069

10 0.,5 7.5 -0.159

11 0.5 10.5 0.109

12 13.5 -0.108

Experimental streamwise vortex data at X = 77.6 cm (Bell & Mehta

'7

Vortex "motion" was produced by adjusting the vortex centers to a Gaussian
distribution about the mean vortex centers. The transverse velocity component for

an array of llne vortices is given by:

12 rs(z _
,(Y,Z)= (2)

j=l

where I"5 is the circulation of vortex j and the squaxed distance from the grid point

(Y, Z) to the instantaneous vortex center (_, ZS) is given by

= (Y - + (z - 25)2. (3)
To avoid singularities at the vortex centers, the velocity was forced to plateau at
a value corresponding to an arbitrary minimum distance away from the vortex
center of 0.01 cm. The Gaussian distributed deviation of the vortex centers was

produced using the IMSL Inc. subroutine RNMVN, which generates pseudo-random

numbers from a multivariate normal distribution. Convergence of the correlations

was achieved with 8000 points. Various levels of meander were produced by varying
the standard deviation of the distribution of the vortex center locations.

The streamwise vortices lie in the braids between the spanwise vortices and axe,

therefore, inclined and subject to random agitation normal to the mixing layer. This
transverse meander is, of course, confined to less than the mixing layer thickness and

would be expected to desensitize the proposed measurements to Y positioning. The

standard deviation of the transverse meander used for this study was selected based

on the nominal mixing layer thickness (5 _ 4 cm) and the domain of significant

influence of the vortex (d_ _ 1 cm) for the parameters at the 77.6 cm streamwise
location as:

q

_y ----_(6- d,)= 1.5 cm (4)
_5
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Several cases were run with grid spacing of 0.6 cm which corresponds to the min-
imum probe separation possible in the experiment. The transverse meander was

kept fixed at cry : 1.5 cm as explained above. The spanwise meander was adjusted

in 0.5 cm increments to examine the sensitivity of the correlation R_(0, Z, r) with

respect to spanwise meander. The resulting plots of R_(0, 0,r) are included as
Fig. 2. The spanwise integral scale is observed to decrease significantly with in-

creasing spanwise meander for constant transverse meander. That is, the spanwise

distance over which the transverse velocity component (v) is correlated decreases

significantly for large meander. By comparing the correlation results obtained at

the near-field stations (where the peak streamwise vorticity is relatively high) with
those obtained in the far-field region, it should be possible to establish the role of
vortex meander in the far-field.

An additional noteworthy feature of the correlations in Fig. 2 is the off-axis peak
of Rvv(O,O,r) at r -- 0.5. This is due to the coincident vortex centered at Z -_

0.5, very close to the correlation "measurement" axis (i.e. Y:0). The introduction

of spanwise meander with _z as low as 0.25 cm (not shown in Fig. 2) forces the
correlation to peak at r : 0 as expected.

3. Future plans

The study of the plane mixing layer will be completed in two parts. The first

half of this year will be devoted to the investigation of the mixing layer structure
via cross-correlation measurements. The emphasis will be on addressing questions

regarding streamwise vortex meander and on establishing details of the initial in-
stability mechanisms and vortex formation. In addition, where possible, an effort

will be made to begin comparisons between the proposed measurements and some
of the most recent direct numerical simulations.

During the remainder of the program, phase-locked velocity measurements will

be performed by acoustically forcing the mixing layer. By establishing a periodic
sequence of spanwise vortices, it should be possible to examine the detailed structure

of the streamwise vortices. By measuring the scale and spacing of the streamwise

vorticity in the braid region of the mixing layer, more direct comparisons of the wind
tunnel measurements can be made with the direct numerical simulations of the same

flow (Rogers, M. M. & Moser, R. D. private communication). In particular, initial

conditions (streamwise vortex strength and distribution) will be measured in detail
so that they may be used as input to numerical simulations.
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Streaks in turbulen t boundary layers

By James M. Hamilton

1. Motivation and objectives _

Elongated regions of low- and high-speed fluid are among the most prominent

structures in wall-bounded turbulent shear flows. While the general mechanism

by which these streaks are produced is understood (the transport of streamwise

momentum by cross-shear flow), some of the details of the process remain unclear.

For instance, it is commonly observed that the low and high speed regions alternate

with a spanwise "wavelength" of about lOOv/u_, where v is the kinematic viscosity,

and u_ -" %/v(OU/i_y)wan. Why this particular length scale should dominate has

not been satisfactorily answered.

Jang, Benney, and Gran (1986) attempted to explain the preferred streak spac-

ing as the result of a direct resonance mechanism. The Navier-Stokes equations

can be converted to a pair of equations for wall-normal velocity, v, and wall-normal

vorticity, coy, by invoking continuity, eliminating pressure, and linearizing about a

two-dimensional mean flow. When normal mode solutions are sought, the resulting

equation for v is the Orr-Sommerfeld equation. The wy equation has an inhomo-

geneous source term containing v. Direct resonance occurs when the eigenvalues of

a v-mode match the eigenvalues of an coy-mode corresponding to the homogeneous

equation; the v term in the coy equation then forces the wall-normal vorticity. The

resulting solution for coy is secular and may result in initial growth even with de-

caying modes. Waleffe and Kim (1991) have shown, however, that direct resonance

does not lead to appreciable scale selection. In addition, non-resonance modes may

grow faster than the direct resonance response as the resonance modes tend to have

large decay rates.

Waleffe and Kim suggest that instead of direct resonance, the streak spacing is

due to the complete self-sustaining mechanism of streaks, that streaks with spac-

ing less than 100 wall units cannot be maintained. This view is supported by the

finding of Jimenez and Moin (1991) that the smallest computational box in which

turbulence could be sustained had a spanwise dimension of 100 wall units. Waleffe

and Kim extended this idea by minimizing the height of the computational domain

as well as the span. They pointed out that, in a channel, the simplest self-sustaining

non-laminar flow would consist of a pair of counter-rotating streamwise vortices in

each half of the channel, and, in a Couette flow, the simplest structure would be a

single pair of vortices centered between the walls bounding the flow. Accordingly,

for circular vortices, the minimum wall separation for which turbulence could be
maintained should be about 100 wall units in a channel flow and 50 wall units in a

Couette flow. Assuming laminar mean streamwise velocity profiles, the correspond-

ing minimum Reynolds numbers are 1250 for the channel flow (based on centerline

velocity and channel half-height) and 625 for the Couette flow (based on wall ve-

locity and channel half-height). Simulations support this view, and, for Couette
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flow, Waleffe and Kim found that turbulence could not be maintained at Reynolds

numbers of 330 or below and was maintained at a Reynolds number of 400.
Waieffe and Kim use the term "marginal flow" to describe simulations in which

the domain is just large enough to produce and sustain the expected structures. A

marginal flow is advantageous for the study of the streak production mechanism

because it eliminates the unnecessary large scales. They note, however, that the
complete process is still too disordered to firmly establish the mechanisms involved
and suggest the imposition of symmetries to further constrain the flow.

The objective of the present study is to pursue this idea of imposing symmetries

on the marginal flow in an effort to identify and understand the basic processes
involved in the self-sustenance of turbulence.

2. Accomplishments

The simplest flow for the study of streak formation is the plane Couette flow,
which has only a single sign of mean spanwise vorticity. The symmetries to be

imposed on this flow are consistent with the expected structure, a side-by-side pair

of counter-rotating streamwise vortices centered between the bounding walls, as
illustrated in Figure 1. The coordinates x, y, and z correspond to the streamwise,

wail-normal, and spanwise directions, respectively. The associated velocities are

u, v, and w. The computational domain is periodic in x and z, with dimensions

L_ and Lz. These lengths are made dimensionless by half the wall separation, 2h,

thus the walls are located at y -- 4-1. The computations axe made with a slightly

modified version of the spectral code of Kim, Moin, and Moser (1987). In addition

to being consistent with strea.mwise vortices, the imposed symmetries must satisfy
continuity, the Navier-Stokes equations, and the boundary conditions. The three
symmetries to be considered here are:

u(x,_,z) =u(x,_,-z)

v(_,_,z) =,,(_,_,-z)
w(_, _, z) = - w(_,_,,-_)

a reflection about the plane z = 0,

(1)

,,(x, _,,z) =,,(_ + Lz/2, _, -_)

v(x, _,,z) =,,(_ + Lz/2, _,-z) (2)
w(x, y, z) = - w(x + L_/2, y, -z)

a translation in x followed by a reflection about z = 0, and

_(_, y,z) = - _(-x, -y, -_)

,(_,_,_) =- _(-_,-_,-_) (3)
_(_, _, z) = - _(-_, -_, -z)

a reflection about the point (x, y, z) = 0 (note that while this last symmetry is not

strictly consistent with the streamwise vortex arrangement of Figure 1, a simple shift
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FIGURE i. Basicsymmetric vortexstructure.

of the vortex centers in the figure to z = 0 and z = "4-Lz/2 produces a compatible

flow). As an example of an inappropriate symmetry, consider symmetry (1) above
as a reflection about the plane y = 0 rather than z = 0. Use of such a symmetry

might be tempting, as it gives the correct behavior for v and w in accordance with

Figure 1. Such a symmetry would fail to satisfy continuity, however, as Ou/Ox and
Ow/Oz are even functions of y, but Ov/Oy is odd. The symmetry would also fail to

satisfy the base Couette flow and the boundary conditions, u(x, y = .4-1, z) = -4-1.

While each of the symmetries (1) through (3) is compatible with side-by-side

streamwise vortices, the more important consideration is how the flow evolves away
from this state. After all, if only x-independent streamwise vortices were allowed,

the vortices would simply decay, and turbulence would be impossible. As a baseline,

the temporal evolution of the spectral energy (f_l[u2(kz,y, kz) + v2(k,,y,k,) +

w2(k_, y, k_)] dy) of a flow with :to imposed symmetry is plotted in Figure 2. The

solid line in the figure corresponds to the mode with no z-dependence and spanwise

period L_, the fundamental mode for a single pair of counter-rotating streamwise
vortices extending through the domain. This mode follows a quasi-periodic cycle,

with an average period of slightly more than 100 h/Uw_l (compare this value to the

average period of 100 h/U observed by Jimenez and Moin in their minimal channel

computations, where U is the centerline velocity of the equivalent laminar flow).
The initial conditions for this flow were obtained from developed flow at a higher

Reynolds number: a flow was started with random initial conditions at Re=625,

allowed to evolve for about 450 time units, and Re reduced to 500 for an additional

450 time units to produce the input flowfield for the Re=400 case.

This particular flow is of special interest because it closely follows the translate-

and-reflect symmetry (2), even though no symmetry is imposed. This can be seen

easily in Figure 3, velocity plots of two z-y planes spaced a distance Ld2 apart.

Note that Figure 3(b) is nearly a mirror image of Figure 3(a). The symmetry

apparent in Figure 3 is typical of this flow though it is not seen in flows with
different initial conditions, Reynolds numbers, or domain sizes.
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FIGURE 2. Temporal evolution of energy in several spectral modes of a marginal
flow with no imposed symmetry, Re=400, Lx = 2% L, 4----_'.

If the flow closely follows a symmetry when none is imposed, it is useful to

impose the symmetry and observe the effect on the flow. The flow of Figures 4 and

5 has the translate-and-reflect symmetry imposed, with the same initial conditions

(though symmetrized) as the flow of Figures 2 and 3. From Figure 4, it is clear

that the energy in the fundamental, x-independent mode of the forced-symmetry

flow exhibits a quasi-periodic cycle much as in the unsymmetric flow though the

average period is shorter (about 80 time units) in the forced-symmetry case. This

similarity can also be seen in a comparison of the details of the flowfield in the two

cases. At times corresponding to peaks in the energy of the (/¢x,/%) = (0,27r/L,)

mode (the solid line in Figures 2 and 4), the flow is dominated by a pair of side-by-

side streamwise vortices as expected. The velocities in Figures 3 and 5 occur near

minima of this mode, and, as can be seen, relatively strong, meandering, spanwise

flows develop in both cases, and the vortices are no longer side-by-side. Thus, while

imposition of the symmetry does have some effect on the evolution of the flow, the

general features are unchanged.

The same initial conditions used above, when applied to flows with either of the

symmetries (1) or (3), result in the rapid decay of turbulence. If, however, the

symmetry is imposed at a higher Reynolds number and the Reynolds number then

progressively reduced, a flow conforming to symmetry (3), reflection about a point,

will sustain turbulence down to Re=400. The resulting flow has the same cyclic

behavior of a flow with no symmetry imposed. Symmetry (1), reflection about the

plane z = 0, does not seem to produce self-sustaining turbulence even at Reynolds

i
E
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FIGURE 3. Velocity field for flow of Figure 2 at t = 107 at (a) x = 0 and

(b) x = Lx/2. Shading indicates streamwise Velocity with black lowest and white

highest, and vectors indicate cross-flow velocities.

numbers as high as 625. This symmetry may, however, require a subharmonic-type

flow, that is, a basic flow structure consisting of two pairs of streamwise vortices,

and hence require a larger value of Lz than has been considered to date.

3. Future Plans

Initially, it was hoped that one or more of the above symmetries would not al-

low sustained turbulence and that the remaining symmetries would produce a very

"clean" flow in which the self-sustenance mechanism became obvious. Indeed, sym-

metry (1) does not seem to maintain turbulence in marginal flows, though the

possibility of a subharmonic structure remains to be investigated. Even with the

imposition of the other symmetries, however, a truly "clean" flow has remained

elusive. Still, there is cause for hope in the nearly periodic, cyclic nature of the

marginal flows. This cycle consists of three parts. Streamwise vortices produce low-

and high-speed streaks with little x-dependence in the flow. Large x-dependence



360 J. M. Hamilton

0.4

0.3

"-- 0.2r_

0.1

-- (k.,/=.)=(o,15)
...... (o,])
........... (/,o)
...... (1,_3)
...... (/,3)

"¢',,"" . ..,j.* - _ ":_ ,-2-' "'- .,._ - . "2"_1 "" ; ' _;.." ." _'." . "<" N,_. , "r - '.,.'. ¢'

o 26o 36o 46o soo
t=t*U,,_l /h

FIGURE 4. Temporal evolution of energy in several spectral modes of a marginal

flow with imposed translate-and-reflect symmetry (symmetry (2) above), Re=400,
4
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FIGURE 5. Velocity field for flow of Figure 4 at t = 291 and x = Lx/4. Shad-

ing indicates streamwise velocity with black lowest and white highest, and vectors

indicate cross-flow velocities. Vector length scale same as Figure 3.

develops, and the flow breaks down, producing enhanced mixing and the disap-

pearance of well defined streaks. From this disorder, elongated streamwise vortices

emerge, and the cycle repeats.

|
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Of these three steps, only the first, the production of streaks from streamwise vor-

tices, is well understood. The third step, the appearance of elongated vortices, is
not understood but appears to be a very robust process; even decaying flows rapidly

evolve to long, counter-rotating streamwise vortices. The mechanism(s) which ac-

tively determines the length-scales of the streaks has not yet been identified but

surely occurs during flow breakdown or the re-coalescence of streamwise vortices.
Future plans include continued efforts to examine marginal and forced-symmetry

marginal flows to further refine the details of the three step cycle described above

with particular emphasis on the latter two steps. The breakdown of the nearly z-

independent vortex-and-streak structure bears some resemblance to an instability,
and it may be worthwhile to model this flow and study its stability. The fact

that flows with and without forced symmetries behave with remarkable similarity

suggests that any instability may contain the symmetry. This may lead to additional

insight into the process.
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Some feedback procedures for control of flows

By Roger Temam I

In this article, we present some avenues concerning the application of the math-

ematical methods of control theory to the difficult and challenging problem of the

control of turbulent flows. The effective implementation of these methods for the

Burger's and Navier-Stokes equations is in progress at this time, with very sat-

isfactory results already obtained in the case of the stochastic Burgers equation.

Effective implementation and discussion of the physical relevance of the results will

be presented elsewhere (see Choi, Temam, Moin and Kim, 1991).

1. Introduction

The control of turbulent flows has been identified as an important problem with

many potential benefits in science and engineering: aeronautics first of all, but also

combustion, laser, fusion, chemistry, etc. At a time where the available computing

power is increasing and expected to continue to increase/_apidly, the problem of

controlling turbulent flows does not seem out of reach a_ mor_.

In aeronautics, the main objective is to reduce skin-_ction an_ drag by limiting
the counter productive effects of turbulent boundary layers. This can be achieved

in fluid mechanics by using passive means (paJsive contro 0 such as riblets or large

eddy break-up (LEBU) devices. On the other hand, active control of turbulence is

achieved by active (mechanical) devices which tend to change the kinematics of the

flow. When the physics of the problem is well-known, in particular the appearance of

organized patterns, one can think at destroying these patterns or at least impeding

their formation by preassigned kinematical modifications. Such a procedure based

on the modification of wall velocities has been proposed and studied in Moin, Kim

and Choi (1989). When the physics of the phenomenon is not known or is too

complicated, we are tempted to appeal to the more systematic but less intuitive

methods of control theory.

We show in Sec. 2 how to cast the problem of controlling turbulence for a channel

flow into a problem in optimal control theory and on this occasion we introduce the

formalism and language of control theory. Similarly several physical problems of

fluid mechanics and thermodynamics have been formulated in Abergel and Temam

(1990) into problems of control and studied with the methods of optimal control

theory.

As we recall hereafter, the methods of control theory presented in Abergel and

Temam (1990) are not practical, in some sense because these methods are too good,

i.e., we try to find the best control producing, for example,the rnazirnal reduction

of drag. For engineering applications, we would be, however, satisfied with less
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perfection; for example, some reduction of drag may have significant practical ef-
fects. This is the object of the methods proposed here. They pertain to suboptimal

control and feedback theory. As we will see below, they consist of restricting the

class of controls to some specific (simple) subclasses and replacing the global in time

procedures as in Abergel and Temam (1990) by time evolutive procedures.

2. Introduction to control theory: Some model problems
in control of flows

Although we keep in mind that turbulent flows are time dependent, we will dis-
tinguish between stationary and time dependent flows and start with the somehow

academic but instructive case of stationary flows.

_.1 Stationarlt channel flow

Consider the stationary channel flow. The streamwise direction is the z direction,
the spanwise direction is the z direction, and the walls are at 9 = 4-1. The mass

flux is prescribed equal to M. Periodicity of velocities and pressure is assumed in

the z direction; periodicity of velocities with (unknown) drop of pressure is assumed

in the z direction. Let u -- (ul,u2,u3) denote the velocity vector in the fluid and
assume that we control the flow through the wall boundary of the normal velocity

= (2.1)

It can be shown that the stationary Navier-Stokes equations reduce to a functional

equation for u (see e.g. Temam (1984, 1991)) involving q_:

vAu + R(u, _b) = 0. (2.2)

Here v > 0 is the kinematic viscosity, A is the so-called Stokes operator, and R

corresponds to inertial and boundary terms; in particular R depends on M although
the dependence is not made explicit.

A typical optimal control problem for (2.2) is the following (see J. L. Lions (1969)):
to find the best d such that some observation z = Cu of u achieves some desired

value Zd or is at least as close as possible from Zd. In the language of control theory,

u describes (is) the state of the system, and (2.2) is the state equation.
is the control.

z is the observation.

The cost function could be, for instance, the function J = J(_) 1

S(qS) = 2][_bl[' + _[]Cu- zd]l 2. (2.3)

Here some norm of Cu - Zd, [[Cu - Zdl[, accounts for the cost of z being different

from Zd; rn/2 [l_ll 2 (m > 0, II ll-- some appropriate norm of qb ) accounts for the

I u is a function of _b through (2.1), u ----u(q_). Hence J is a function of q_. Note that u is the

traditional notation for the control in control theory, and it is also commonly used for the velocity
in fluid mechanics!

=-
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cost of the control itself: m = 0 or small for cheap controls, m large for expensive

controls. For example, this term will account for the price of achieving high val-

ues of the velocity _b or, for time dependent problems, the price of realizing fast

responses demanding fast electronic chips. We keep in mind, howeve,r that (2.2)

is an academic problem which, due to the absence of turbulence, would only make

sense physicaiJy for very viscous fluids.
The mathematical formulation of the problem is the following:

To find _ which minimizes J subject to (2.2):

Inf÷J(¢). (2.4)

The control _ can be unrestricted or restricted to some admissible set of controls

l/ad taking into account some physical and technological restrictions.
The methods of calculus of variations tell us that a problem such as (2.4) possesses

at least one solution, and they give us some characterizations of the best _b through

the adjoint state and some algorithms to reach the best (optimal) control.
Feedback theory consists in looking for _bas a function of u or of some observation

of u. Although feedback problems are mainly relevant to time dependent problems,

we can formulate such a problem here.

For instance, if we look for a feedback control, then, E being a scalar and F a

vector, we would look for
= E + Fu' (2.5)

Now problem (2.4) with (2.5) substituted into (2.2) becomes:

To find E, F which minimize J(_b) = J(E, F) subject to (2.2), (2.5):

Inf E,FJ(E,F). (2.6)

More general shape functions could be considered 81 (u), ..., 8,(u) with

I"

¢ = E E_Oi(u). (2.7)
i=1

_.?, Time dependent channel flow

The slate equation is the Navier-Stokes equation including the boundary con-

dition (2.1) and the other boundary conditions. It is classical that all these con-
ditions/equations amount to an evolution equation in infinite dimension for the

velocity field u = u(z,t). It reads (compare to (2.2))

du
-_(t) + _,Au(t) + R(u(t),¢(t)) = O. (2.8)

Here u(t) is the vector field {z _ u(z, t)) ; again R accounts for the inertial and

boundary terms and depends on the constant mass flux M, although the dependence

on M is not made explicit.
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We are interested in properties concerning the statistical solution of (2.8). This

solution is described by a measure which is not a solution of a simple atate equation

(in fact, it is a stationary solution of the Hopf equation !). Instead of considering

the equation for the measure, we will consider the time averaged solution of (2.8) on

a long interval of time (0, T) with the hope that this average accurately represents
the statistical solution.

The drag is essentially measured in average by D -- D(u):

d,,d,3dt. (2.9)

Here za = z,z2 = y, zs = z, and z_ = y = +1 is the wall.

The choice of the cost function is at our disposal, depending on the costs that

we want to reduce. If we choose to reduce the drag as expressed by (2.9), then the
cost function could be

J(_k) = y I_kl2d*adzsdt +  IDI',

where D is a function of _b through u which is itself function of _b.

(2.10)

A control problem like (2.4) can be set:

To find $ = $(za, z3, t) which minimizes d subject to (2.8) and (2.9)

xnf, s(,). (2.11)

The method of control theory and calculus of variation (J. L. Lions (1969)) as

developed in Abergel and Temam (1990) yield the existence of an optimal control

(the best _b)and produce algorithms for itsdetermination. However, these classical

methods and algorithms necessitatethe resolution iteratively(i.e.,severaltimes) of

the Navier-Stokes equation in (2.8) and its adjoint (see below) on the whole, large

interval (0, T); such computations are out of reach at this time. Furthermore, the

optimal control depends on the initial distribution of velocities u]_=0, although one

can hope that the effect of initial velocities dissipates as T becomes large.

If equation (2.8) were linear, the optimal control would be given by a linear
feedback law:

= Pu + E, (2.12)

where P is solution of a Riccati type equation (J. L. Lions (1969)), and E is easily

determined. When equation (2.8) is nonlinear, there is no satisfactory feedback con-

trol theory even for finite and small dimensions (as in flight control), not mentioning

high or infinite dimensional problems.

We describe hereafter some empirical and not yet fully mathematically justified

procedures proposed to address this problem.
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3. Suboptimal control and feedback procedures

We start by considering the stationary case.

$.1 Stationa_ problem

Equation (2.2) is considered as an abstract equation, totally independent of the
original Navier-Stokes equation. Then (2.2), (2.3), (2.4) is an optimal control prob-

lem which can be satisfactorily resolved by a gradient algorithm (conjugate gradient
would be better, but we restrict ourselves to a gr_lient algorithm).

The gradient algorithm consists in computing the Fr_chet derivative

_-----_(_) (3.1)

and looking for a sequence of controls _n recursively defined by

- =-,,,b-_-(,/,). (3.2)

By Taylor's formula and (3.2),

i(¢ _÷_)_ J(_") + _-_(_ J (¢_÷' _ ¢_),
:DJ ,, _ (3.3)

j(q,"+')_ .r(,/,")- ,, [b-_(,/,)[

so that the sequence J(_'_) is clearly decreasing. As in Abergel and Temam (1990),
we infer from optimization theory that the sequence _n will converge to an optimal

control for suitable p's and if the initial _lue _o is chosen sufficiently close from

this optimal state.
Furthermore, the introduction of the adjoint state and adjoint state equation

produces a convenient way to compute the Fr_chet differential (3.1).

Indeed, define first

= v-_ ._, (3.4)

where the right hand side of (3.4) is the Fr_chet differential of u with respect to

applied to a test function _ (of the same type as _). Then by linearization of (2.2),

we promptly see that r/is solution of equation

VR,,A,7+ _-g(,,,_). _+ (,,,,).,_ = o. (3.5)

We do not discuss here the fact that the solution of (2.2) may not be unique or

the fact that (3.5) may have no (or many) solution: this difficulty will not be

encountered in the case of interest for us (see below).

Now, by Fr_chet differentiation of (2.3), using (3.4) and (3.5), we obtain

_--_(,/,).,_ (( _,,_)) (( c,,(,/,)- z,,c,7 )).lrTI. +
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Define then the adjoint state ¢ through the following equation called the _djoint
state equation

7) R

_A'¢ + (_(., _))'_ = C'(C.(_) - =_). (3.6)

In (3.6) and heredter, stars • indicate adjoint operators (with respect to the scalar
product under consideration ((.,.))). Then

((c.(+) - zd,C_ )) = ((C'(C.(+) --*d),. ))

= (( _a'¢ + (_( )) ,1))
Z_R

=(( ¢,_a_ + (_(.,_))_))
= ( by (3.5))

_DR

=-(( _,_-_(-, _)_ ))
_R

=-(( (_-_(., _))'_, _ )).

From this calculation, we conclude that

_J _R

_--_(u, _b) _ =-(_-(u,_b))'( (3.7)

and we are in position to implement the gradient algorithm (3.2):

Once _'_ is known, we compute un by solving the state equation (2.2) with _b= _b".

Then we compute the adjoint state _" by solving equation (3.6) with _b-- _bn, u -- u_.
We obtain _,+1 from (3.2), and we can continue.

Suboptimal feedback laws

Suboptimal feedback laws can be implemented in the same way. For example, for
a linear feedback law as (2.5),

= E+Fu,

J becomes a function j of E, F through (2.5) and (2.2). The analog of the gradient

algorithm (3.2) consists in constructing two sequences E '_, F _, recursively defined
by

E "+1- E"=-pl _--_(E ,F"),
(3.8)9J ,

F "+_ - F" = -p2 _-_(E ,F").

Note that the relaxation parameters p > 0 are chosen differently in the two equations

(3.8). One can define an adjoint state ( through an equation similar to (3.6) and

|
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(i)
(2)

compute in a convenient way the Fr_chet derivatives DJ/_DE and _DJ/DF. Details

will be given elsewhere (see Choi, Temam, Moin and Kim (1991), hereafter referred

to as [CTMK]).

$.2 Time dependent problen_

The suboptimal procedure that we propose consists of the following:

Time discretization of the state equation

At each instant of time, the discretized equation is a stationary one to which we

apply the procedure above.

Of course, there is no reason which guarantees that the controls will be optimal, but

at least (3.3) shows that the cost function tends to decrease. Numerical experiments
conducted in the case of the stochastic Burgers' equation shows that indeed the

cost function decreases significantly (see Sec. 4). A mathematical analysis of the
procedure will be conducted elsewhere.

Consider the evolution state equation (2.8): again this could be the original

Navier-Stokes equation for the channel flow or an abstract equation originating
from a totally different problem.

For step (1) we consider here a simple time discretization scheme, the implicit
Euler one. More accurate and more involved schemes will be considered in [CTMK].
Hence

which we rewriteas

with u = u", _b= _b",

At + uAu" + R(t,", _") = O, (3.9)

.4,,+ n(,,, 0) = o, (3.10)

.Au'* = u _ + uAtAu'*,
(3.11)

R.(u '_, _k") = -un-a + AtR(u '=,¢'_).

At each step n, the cost function J is still given by (2.3)

m 1 IIC,,"- z,,I]2, (3.12)= - iI¢-Ii'

with u'_functionofCn,u,_= u,(@,_)through(3.9)-(3.11);hence J actuallydepends

on n, J = 3n becauseequation(3.9)depends on n due tothe term u"-I. Note that

for At sufficientlysmall,thereexistsa unique solutionun to (3.9).Therefore,the

difficultyof non-uniquenessofsolutionfor(2.2)does not ariseanymore for (3.10).

The adjoint state is defined as in (3.5), (3.6)

n n " :DR" "un,
A r/" + -_-(u ,¢ )¢ + _--_-( ¢'_) r/'_ = O, (3.13)

23_
.A*_ '_+ (-_(u ,_'_))*_ = C*(Cu '_- zd). (3.14)
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The gradient algorithm (3.2) now reads

_ = -p

By Taylor's formula, as in (3.3)

(3.15)

j,,(¢,,,h+l) <: j,,(¢,_,i), for all n,k,

and as k ---* oo, Cn,h converges to _b'* which achieves the minimum of jn. It is not

necessarily true that the minimum of J'_ decreases as n increases, i.e.,

jn(¢n) < j_-](q_-_), for all n. (3.16)

In our computations, we observed that (3.16) is not always true. However, an

overall sharp decrease of this infimum occurs (see Sec. 4). The explicit calcula-

tion of _J/2_¢ (_bn,k) using sequences u n,k, _bn,k, _n,k, k -- 0,1, ... (and n fixed) is
straightforward; see [CTMK].

4. Application to the stochastic Burger's equation

The following is a short excerpt from [CTMK].

We consider the randomly forced Burgers' equation with non-zero velocity bound-
ary conditions.

Ou 0% Ou

Ot v_-z2 + uOzz = X, O<z<L, (4.1)

u(O,t) -_ ¢0, U(L,t) _- eL. (4.2)

If X = 0, (4.1) is the classical Burgers' equation for the velocity u in the z direction

which represents a balance of time dependence, nonlinear convection, and diffusion.

The parameter _, represents the viscosity. In the absence of forcing (X = 0, ¢0 =

¢z, = 0), the solutions of (4.1) decay to zero from any bounded initial data (and

even from any initial data with finite spatial mean-square value).
The foicing function X _s a whKe noise random process in Z with zero mean i

(see Chambers et al. i988, Bensoussan and Temam 1972, 1973). The mean:square

value of the dimensional forcing, a 2, defines a velocity scale U = _ where L is

the length of the computational domain. We denote by Re the Reynolds number

UL/t,. Burgers' equation in nondimensional form using U and L as the typical
velocity and length reads

Bz
E

o% 1 0% Ou

_ ReOz 2 + uo-zx = X, 0<z<l, (4.3)

u(0, t) = ¢0, u(1, t) = _bl, (4.4)
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where now z, t, u, X are nondimensional and

<X>=0, <X2 >= 1. (4.5)

We consider the space and time discretization of (4.3) - (4.5) using as in (3.9) an

implicit Euler scheme. The space mesh is Az = l/N, N an integer, and the time

mesh is At. The approximate values of u and X are

The time mesh dlscretization for X is At_ usually larger than At. Actually At,.

and Az are chosen first, and At is then chosen as large as possible so as to ensure

accuracy of the numerical scheme. Hence at each instant of time nAt, the x_,J =
• n is constant on a time2,...,N- 1, are totally uncorrelated random variables; Xj

interval (kAt,, (k - 1) At,), where k is an integer, and if nAt and n'At belong to
n Itwo consecutive or different such intervals, all the Xi are totally independent of all

the X_ (n' > n), with < X_ >= 0, < (X;') 2 >= 1.

The analog of (3.9) reads

iii]

vt w,--1

uj - uj

= x;'At,

1 At 1 At
n -- _ Uj_I )Re Az2 (uj+l 2uT+U;_l)+.___z(ujn+l_ n 2

I<j<N-1,

(4.6)

= :

We easily write (4.6), (4.7) in the form (3.10)- (3.11).

(4.7)

At each instant of time, the cost function considered here is

N
mS

./-1 ,
.i=l

(4.8)

with rni >__0 and in most cases ml > 0, m2 > 0.

Algorithm (3.15) can be implemented with an appropriate descent parameter p.

Although quite involved, the computation of "DJ/:D_ follows from (3.13) and (3.14).

The following figures correspond to the case where Re = 1500,N = 1/Az =
2048, At = 0.001,At_ = 0.01,ral = 1,ra2 = Az, ms= 0. Figure 1 shows the

evolution of the cost function J in the above control case. The velocity gradient at

the wall/_/0z(z = 0) is shown in Fig. 2.
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By Hubert H. Shen

1. Motivation and objectives

The problem of turbulence in an electrically-conducting fluid, although central

to controlled fusion and many geo- and astrophysical processes, is in its infancy

compared to (nonconducting) hydrodynamics. "The understanding and manipula-
tion of magnetohydrodyna_nic (MHD) turbulence is more in need of theory than is

the case for Navier-Stokes fluids..." (Montgomery 1989). As pointed out by Mont-

gomery, there is a surprising, almost embarrassing gap in our understanding of what

the elementary or equilibrium states of a driven, dissipative MHD fluid are. Much
work has been done in the past couple of decades (as reviewed by e.g., Moffatt

1978, Soward & Childress 1986, Roberts & Soward 1992) on the closely- related

"dynamo" problem, namely, how fluid motion can overcome Ohmic dissipation to
induce and maintain magnetic fields in geophysical and astrophysical contexts. Dy-

namo models, however fruitful and illuminating, are often constrained to rely upon
phenomenological, statistical or perturbative assumptions or to limit themselves to

the so-called "kinematic" dynamo problem, in which one ignores the back- reaction

of the generated magnetic field upon the velocity. Work on the self-consistent and

fully-developed "hydromagnetic dynamo, though dit_icult and fraught with uncer-
tainties, needs to be extended. Dynamo theory is far from reaching its final form."

(Cowling 1981)
In what follows we consider the hydromagnctic dynamo from the Hopf functional

point of view. This has recently been developed in the context of Navier-Stokes

turbulence (Shen & Wray 1991); here wc incorporate buoyancy, rotation, electri-
cal conductivity, scalar diffusion, and source. No perturb,tire, phenomenologlcal,

or statistical assumptions or variational arguments are invoked; we seek an exact
turbulent closure of the MHD equations. This leads to dosed-form analytic expres-

sions for correlation functions (such as the mean electromotive force (en_f)) and

moment-generating function"is for the velocity, magnetic field, and scalar which

generalize the usual ideal, static, nonstatistical solutions. Equilibrium, stationary
nonequilibrium and time-dependent solutions are proposed. The incorporation of

compressibility and realizability axe outlined. This method of testing the validity of

so-called alpha models (Moffatt 1978) for the generation of large-scale fields should

also bc applicable to testing the validity of analogous non-MHD models (Frlsch et

al. 1987 and references therein) for large-scale turbulent structure generation in

(non-magnetic) anisotropic, helical, or compressible flows. No claim is made for
uniqueness or completeness; however, the fact that (1) exact statistical solutions
can be obtained at all, and that (2) in fact more than one class of solutions ap-

pears to emerge from this approach, seems sufficiently promising to warrant further

investigation.

PRECEDING PAGE BLANK NOT FILMED
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2. Accomplishments

P..l. Functional MHD equationJ

The equations which we consider here are the MHD equations consisting of the
Navier-Stokes equations with Lorentz force and buoyancy

(_ - vV2) u(x,t) = -u. Vu(x,t) - V--_-P+ _c(x,t) + J(x't) x B (1.1)P P

the induction equation in the usual nonrelativlstic low-frequency regime

(a_ plrV,) B(x,t) = V x (u x B ) (1.2)

and the scalar (temperature) equation with diffusion and source term

0c

+ V.(uc)- V. (DVc) -- Q (1.3)

supplemented by incompressibility, Ohm's law, the definition of the Lorentz force,
and the "pre-Ma_xweU" equations:

V. u(x, t) = 0 J = _(E + u x B)

VxB=pJ V.B=0 VxE= -I

F = (qE + J x B) (1.4)

0B
V. E = -q (1.5)

Coriolis and baroclinic effects will also be briefly discussed. The pure thermal

convection problem (in the Boussinesq approximation) is, of course, recovered by

setting the magnetic field and dectrical conductivity to zero and going to a potential

temperature formulation (Busse 1981).

We define the moment-generating functional

_ =_ lefYee dx [r(x)'u(x)+g(x)'w(x)+h(x)'B(x)+l(x)'_l(x)+z(x)c(x)+q(x)Q(x)] I (1.6)

where the brackets indicate ensemble average over all realizations of u(x), B(x), c(x)

and Q(x). ¢[f_x), g(x), h(x), l(x), z(x), q(x)] is the functional Fourier transform of
the joint probability density. (The customary factor of "i" in the exponent has been

absorbed into the dummy functions f, g, etc. for notational simplicity.) _b evolves

under the above dynamics to a stationary state given by the Hopf equations:

v× × + × +g =o (1.7)
pp 5h(x)

I

I
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× -oV x _ + _,_' _h(x)

_ ) 6_ 6¢v. Dv =

(1.8)

(1.9)

where A _ steady-state frequency or growth rate of B. Solutions have been obtained

for the special case of isotropic flow neglecting buoyancy, the scalar equation, and

either all nonlinear or all dissipative terms (Stanisic 1985). We impose no such

restrictions; we first solve the vorticity and magnetic functional equations without

buoyancy and then incorporate buoyancy and the scalar equation.

?,.P,. Equilibdum aolutionJ

In order to find a solution, we add and subtract "ghost" torques

V x (u x a4B) + V x V x asB/p# (2.1)

whose purpose is to "interpolate" between terms in the Hopf equations, so that the

resulting adjacent terms in the equations differ from each other by changing only
one ordinary or functional derivative. We recognize this type of equation as essen-

tially wavelike or convective in nature, thereby enabling us to write down a general

functional ansatz for its solution. Portions of each term are balanced pairwise by

portions of other terms to achieve an overall statistical steady-state. (Those who

prefer to visualize in topological terms may view this method as analogous to the
familiar decomposition of a knotted vortex tube into two or more linked tubes by

the insertion of equal and opposite flux tube elernents between two points. The con-

dition of detailed balance corresponds to solenoidality of vorticity, i.e., the condition

that the knot form a closed loop.)

Balancing a fraction al of the dissipative term against a fraction (1 - a2) of the
transfer term yields

v x v xw, _g(---_= v × × (I- _2) (2.2)

The remainderof the transferterm isinturn balanced by a fraction(1- as) ofthe

magnetic term, mediated by one of the ghost terms:

V x _1--_ x =-Vx xa4_p _fh(x)

V x x a2 = V x x a4 (2.4)

Finally, the remainder of the magnetic term is balanced by the remainder of the

dissipative term, mediated by the other ghost term:

V x V x u(l - a,)6g(x) - V x V x P_ 6h(x) (2.5)
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6 a3 _ a5 6_
V x _ x _-_ 5h(xj = -V x V x/_¢ 5h(x) (2.6)

The fractions aj are to be determined by imposing self-consistency upon the dy-
namics, as we will see.

This pairwise balancing procedure enables us to organize previous deterministic
or llnearized solutions (Taylor 1986, Shercliff 1965) and generalize them to resis-

tive, nonperturbative, and statistical (nonfaetorlng correlation functions) solutions.
For example, the usual magnetostatic equilibria in which velocity vanishes and the

Lorentz force balances pressure would correspond to setting a5 = 0. The kine-

matic dynamo, for which one neglects magnetic backreaction but has in general

nonvanishing transfer and dissipation, would Correspond to setting a4 = a5 = '_'2 =

0, al = 1. Alfven waves, for which u is parallel to B, would correspond to setting

a3 = 1, a2 = 0. Hartmann flows or weak-field dynamos, in which magnetic forces
balance viscosity, and Eulerlzed flows (exhibiting depressed nonlinearity) would be

generalized by setting t_l = a4 = 0,a_ = 1, while Stokes flows would correspond to

the case a2 = 1, a5 = a3 = 0. Magnetostrophic flows or strong field dynamos (in
the absence of buoyancy), in which Coriolls torques balance Lorentz torques, would

follow from decomposing g. u, in equation (1.6) into mean and fluctuating vorticity

(with a separate dummy function for each) and setting al = 1 - a2. Ideal flows
(Gilbert & Sulem 1990) would correspond to setting tr2 = as = 1; in order to satisfy

V x (u × B) = 0, the ghost in equations (2.3) and (2.4) would have to be replaced

<no ) .( o.
Recognizing equations (1.8) and (2.2)-(2.6) as equations for characteristic curves

/

(albeit in function space) leads us to immediately write down forms for their solu-

tion. For equation (2.2),

_' ---_G H(x)+ axf(x) 1:7__g(x) va_

where the "phase shift" ZO) of the traveling wave solution ("propagating" in f and
x rather than in x and t) is governed by

V x (Z o) x G') = 0 (2.8)

Equations (2.3) and (2.6)imply

6_ _ PO'w(M(x)+/__dxl(x). asp [VM + Z (')]s_) a5 -.a---_

where

+ L_ dx f(x). (1-a,)a5 [VMI + Z(')]) (2.9)po'a3 a4

V x (Z (3) x W') = 0 (2.10)

i
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Equation (1.8) yields

64 AN Z(S)] (2.11)

where

V × (Z (s) × L') = 0 (2.12)

(The arguments of G and L in the above equations have additional contributions

from l(x) as in (2.9).) "Prime" denotes derivative with respect to argument. Equa-

tion (2.4) implies

where

6_ 6_

while equation (2.5) implies

(2.13)

5 Z(4) (2.14)
Vx 6f-_ x =0

(1- a')6 )= _-_-pcr6h_) +ZO) (2.15)

where

V × V x Z(2) - 0 (2.16)

Solenoidality of velocity and magnetic field will be guaranteed if

V , /

G(") W(")
=-V.--= O, n = 0,1,... (2.17)

al aS

implying

These equations have a solution:

=0 (2.18)

l-aIG= w L=P_W
_1 4_5

(2.19)

M1 _M1 _ _ as(l_- _3)VMIV "_ + V2 ) I_ra4a_

H=MI =N, Z (2)=Z (4)=0

ZO )= Z(_)= Z(5)-era3
pa5

(2.20)

(2.21)

(2.22)
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Self-consistency of (2.7) with (2.9) and (2.13) with (2.15) respectively constrains

the fractions aj to satisfy

a,,%as : (1 - a,)(1 - aa)(1 - as) (2.23)

a4 a2

vpo-- = _ (2.24)
a5 1 - a_

If B is stationary (_ = 0, DC dynamo), we have the further condition

a, I - as
-- = -- (2.25)
a5 a3

_.5. Effect of acalar equation

_.5.1 No Jcalar diffuJion or ezplicit Jource

In the absence of scaler diffusion and source, the stationary scaler Hopf equation
(1.9) becomes

5f(----x')"V 5z(x) --0 (3.1)

Hence the buoyancy term in the vorticity Hopf equation becomes

Vx_ =-_x xn

for some functional n where

(3.2)

6

Vx _ xn=0 (3.3)

in order for _ × n to represent the gradient V6%_. Add and subtract a "ghost"
torque

ae_ x x (3.4)

where ae depends upon x and replace (1 - a2) by (2 - a2) above. Then we may

obtain a solution by imposing the condition that buoyancy is balanced by pert of

the transfer term (mediated by the ghost term), yielding

V x x = -ae_ x x

.#x xn =ae._x x

This will be satisfied if

(3.5)

(3.6)

x
(VH + Z (')) x G' = V¢, exp(- ae#-dl) (3.7)

E

E.

i
m
.ffi

m
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) /".¢x x n -- _) x V_I e.xp(- as_" _) (3.8)

Equation (3.8) is readily satisfied by n of the form

n ------] dx f(x) x V_I exp(-- as 0 • all) + O_a(x) (3.8a)

The three scalar functions in the above expression are determined by the three

equations (3.3).
If Coriolis forces are present, we obtain instead that

V x x _%_ = -as_ x x fl_b (3.9)

x x n = as_ x x _l_ (3.10)

This will be satisfied if

x
-a x G_-1) = v_l exp(- a,_.a) (3.11)

/"x xn = _x v_b_exp(- as_.a) (3.12)

where G = V x G (-1) defines G (-1).

_.3._ Scalar diffuJion and source

In the presence of scalar diffusion, we let part of the diffusion be balanced by
convection and part by the scalar source. The former condition may be expressed

a8

Dasv ) - _z(x) _f(x) + v x ,_ (3a3)

Letting _ = 0 for simplicity yields a buoyancy term

. 6_ _ _ V _¢_ (3.14)
v × g_) = D-s _z(_) × _ × 6g(x---_

Replacing (1 - an) by (2 - ,_1) and letting the buoyancy be balanced by part of

viscosity yields

6 Dasv

~ '._'---_-'_'11vv' (3as.)_z(x----)

The first moment is given by

5_b 5_b (3.16a)
_z(x) - ,_v' 6f(x)
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In conjunction with (3.15) and (2.2), this allows us to determine ae. Alternatively,

if Coriolis forces are present to balance the buoyancy (geostrophic balance), we have

6 _ 6
6z(x) = ]'_-_" N x 6f(x----) (3.15b)

This gives us a prescription for the scalar moments. Compare with the prescription

implied by (3.2) and (3.6):

V 64 = 6-- × n (3.16b)
6z(x) 6f(x)

6 6 6
V

6z(x) - "s6f-_ × 6g(x)

Similarly, taking into account the source term yields

(3.15c)

6q_x),,_V. D(1-a,)V 6 (3.17)

which provides us with a prescription for the source moments. If there is no explicit

source, we may let ae = 1. The scenario in which buoyancy is balanced by Lorentz

forces to yield a guiding-center drift current which is perpendicular to gravity and

the magnetic field is already implicit in equations (2.3, 2.4, 3.5, 3.6).

_.3.$ Compressibility

If there is a baroclinic term VP × Wp in the vorticity equation, the statistical

description must be augmented to include the pressure and density explicitly. Let us

add the term [nl(x)P(x) + n2(x)p(x)] to the integrand in the exponent in equation
(1.6). Suppose that the equation of state prescribes P as a position-dependent

functional/'1 [u, c, p, x] of velocity, scalar and density. Then the argument of G in

equation (2.7) has the additional integrals

i:dx {z(x)q(x)+ n,(x)P2(x)+n_(x)P, [iv_--_ 2 [VH + Z(')],q, P2,x] } (3.18)

/'2 is related to the first (vector) argument of/'1 in the same way that density is

related to velocity in the steady-state continuity equation V. (pu) = 0 (which holds
here in a statistical sense):

v. (P_[VH + z<l>])= 0

(see equations (5.10, 5.17-5.19) for one explicit formal solution.)
baroclinic term solely against buoyancy 9 x Vp would yield

(3.19)

Balancing the

vP1 = -9 + n3(x)VP2 (3.20)
it
B

r

!
=
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This gives us three additional equations for three additional unknowns n3, q (ap-

pearing in equation (3.20) through P]), and H (appearing in P1 and implicitly in
P2, through equation (3.19)). The incompressibility condition (2.18) used previ-

ously to determine H and the Boussinesq equation of state p ,,_ T used previously

to determine q through equations (3.15) or (3.16) no longer apply, of course. More

generally, buoyancy is balanced against a combination of baroclinlc, transfer, Cori-
olis, and viscous forces, leading to more unknowns and equations via the procedure
outlined above. The adiabatic and isothermal subcases, in which the steady-state

equations of state take the form u. V(P/p "y) = 0 or u. V(P/p) = 0 respectively,

may be treated by a procedure analogous to §2.3.1.

?..$._ Arbitrary ezplicit /orce

If the dynamo is driven by an arbitrary explicit force (Braginsky 1964) instead
of the Boussinesq-type buoyancy forces described above, other approaches may be

useful. For example, if the force is solenoidal, the external torque may be written

as V x V x _ for some vector function _b. If this force is balanced by viscosity,

we obtain that the _ moments are proportional to the corresponding moments of

v_ (within a function whose curl vanishes) where _ is the vorticity. If the force is
nonsolenoidal, we may let the dummy field which is conjugate to the force (in the

definition of the generating functional) be a pseudovector "angle" 0'(z). Then using

the angular momentum identity

5 5 6

5/(x) -- 5/(x) x 60"(x) (3.21)

and balancing the force against part of transfer by adding and subtracting a ghost

torque

yields

6 6

V x _ x 6g(x'----) (3.22)

V¢_1 VM1 Jr Z (1) _-- Beltrami (3.23)
1 - _'2

This particular choice of dummy field is awkward to implement in practice because

of the noncommutativity of the functional derivative 6T(=)" However, it may be

viewed as justification for the use of Beltrami flows for the velocity in kinematic

dynamo models.

t.4. Clo_ure

From the above solution, one can write down exact expressions for correlation

functions. For example, the mean emf is given by

1--a___s [VMI + Z(I)] × W' (4.1)(u(x) x B(x)) =- as_,
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= [Uo (1 -as)as V] x (B(x)) (4.2)

since W' is parallel to W by solenoidMity. (Equation (4.2) may be taken as the
definition of uo.) This may be viewed as an anisotropic inhomogeneous a effect (e.g.,

Krause & R_dler 1980). One may compare this exact result with the conventional

MFE prediction:

T

-_ [(u._)(B) + (u3)(V x B)] =

3as_-rPoa2) [VH + Z(Z)l •[G'W + G(-')'V × W] (4.3)

where r --phenomenological correlation time of turbulent velocity. If we superpose

solutions with different (nonparallel) W, then Uo × (B(x)) will be replaced by a term
which is in general not perpendicular to (B(x)), permitting generation of toroldal

current (and hence po]oidal field) from toroidal field, as desired for dynamo action.

The size of the magnetic fluctuations

(B2___})= c_2a_(1 -aS)v x Z 0). W___' (4.4)

Whether this ratio is >> 1 or << 1 determines the regimes of validity of Ohmic

diffusion and first-order smoothing, respectively. Other correlation functions (e.g.,

(B-V_o) and {B(x)B(x'))) may also be computed to shed light upon questions of
quenching (e.g., MMkus & Proctor 1975, Kralchnan 1979), inverse cascade (e.g.,

Frlsch et al. 1975), or the formation of current sheets (e.g., Parker 1989).

P,.5. Steady 8tare without detailed balance

Consider again the vorticity Hopf equation without buoyancy. We rewrite it

schematically as:

(0 0N+N+ ,=o (5.1)

where the three terms correspond to the viscous, transfer, and Lorentz force terms

respectively (equations (6.6)- (6.8)). This has the general solution

/ rib1db_p(bl, b_)_(bl_ + b_. - (b, + b_)O (5.2)_(_, 0'7,

However, one may gain much more insight by decomposing equation (5.1) into three

simultaneous equations:

a,_-_+ (I- a_) ¢ = F,[¢]
(5.3)

(5.4)

=z
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+(1-_1)_ _= F_[_] (5.5)

where the Fj [_b]are in general operators on _bsatisfying the stationarity condition

_, Fj[_]= 0 (5.6)
j=l

For

FA_]= 0 (5.7)
this reduces to the earlier, detailed balance case. If, in addition, we restrict ourselves

to --=--=--=a_a_ a_ 0 (5.8)

we recover the ideal magnetostatic deterministic solution, which is most often used

as a starting point for stability studies but whose fundamental inadequacy has been

discussed at length (Montgomery & Phillips 1989). Hence we see that the sought-

after generalization of this static solution to resistive, turbulent, noneqttilibrium

solutions can be achieved within the framework of the decomposition (5.3-5.5) with

nonzero aj and Fj.
The physical interpretation of this decomposition may be further clarified by

going to a probability (rather than moment-generating functional) description. We
may write the stationary Hopf equation in "Vlasov-equation" format (dropping the

magnetic and scalar vaxiables for notational simplicity) as

ot ; H du(x)e_ if. _,P[-l_'f f'_
X

= fHd.(_) _ a PI-i. _.e'f '"
X

/H 5 f,..= - du(x)dx _. (a P[u])_' = o (5.9)
X

Inverse functional Fourier transforming with respect to f(x) yields

_--=- d_.

Separating the dissipative (D), transfer (T) and magnetic (M) contributions yields

o= _ -_ ,_= _ (% (5.11)
j=D,T,M J j=D,T,M

The (u)5 are just the functional Fourier transforms of o_. We now rewrite this as
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d
o=d-_ _ ,,:'_ (5.12)

j= D ,T,M

where the "partial probabillties n

/ . + Pj(-oo) = - dr' dx _u • (d)j P[u] + Pj(-oo)Pj(t)- oodt_ d-_ j

(5.13)
The constants of integration Pj(-oo) are arbitrary; if we choose them to satisfy

then

E Pj(-oo) = 1 (5.14) i
j= D ,T,M

p_(t) = 1 (5.15)
jfD,T,M

for all t. Similarly, Pj(t) will remain hounded in the interval [0,1] for MI t if initially
so bounded, just as

P[u(x, t)] I-I du(x, t) = P[u(x, 0)] 1-[ du(x, 0)
x x

(5.16)

guarantees the boundedness of P[u].

Hence we see that the time rate of change of the probability contributed by dissipa-

tion, transfer, and magnetic processes (with total probability change = 0 in steady

state) is formally equivalent to the time rate of change of the probability contributed

by disJipative, tranJfer, and magnetic "atatea" (with total probability change -- 0
in a closed system.) In other words, we have shifted our perspective slightly, from

solving for stationary probabilities with independent variable u and parameter j, to

solving for nonstationary probabilities with independent variable j and parameter

u. The Fj's represent the net probability flux or transition rate between pairs of

states. Note that when _ vanishes, we obtain that vV2w weakly vanishes (its en-

semble average with any n-point function of u, B, c, and their derivatives vanishes)
implying that PD vanishes. In other words, I'D may be interpreted as a measure of

the intensity of vortex reconnection, PT as a measure of vortex stretching, and PM

as a measure of magnetic stretching.

One could tryto:soIve the V]asov-type equation (5.10) directly. For example, for

the one-point velocity pdf, one could transform to the local principal axes frame
where

_--;.-,,_,_ (5.17)
Then one may verify that

31 /uP(u(_))= _ _ + dv.n ×
i=1

(5.18)
i
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where

nj(u) = . . _i + jth component of null eigenvector of

,1st1 tlsk2 -_ilka - _22k2
12akl -lilkl -- _Sk3 fi2k3 J ek'u (5.19)

-,i2k2 - _isks _11k2 tilts ]

However, this becomes intractable (and not particularly illuminating) if one is in-

terested in more than just the velocity at one point. Moreover, this solution satisfies

equation (5.10) pointwise; one may have to consider not the local condition (inte-
grand of equation (5.10)) but the global one (equation (5.10)) in order to obtain

stationary solutions of interest.

_.6. Driven _teadlt atate for particular generating functional

Consider the case in which the FA_b] are arbitrary (subject to equation (5.6)) but
qb = qb(Bl(_)B2(_?)Bs(¢)). Then equations (5.3)-(5.5) become

0 1 - as k2 = F2 (6.1)
1 - al 0 as ks Fs

B (6)
k i - Bj(_j)= constant by eqn.(5.1)

B _ B_(_)B2(_)Bs(¢)

If the determinant of the a matrix vanishes, detailed balance can occur. More

generally, the stationary ensemble exhibits a net probability flux between pairs of
states or a nonzero cyclic flow of probability through the three states. Equivalently,

one may write the matrix equation as

-ks a2 = I F2/_'B ks (6.2)
\ -k, 0 ks as \Fs/4'B k_

Because the determinant of the k matrix vanishes, one may solve for the net tran-
sition rates

F2 = ks _'B (6.3)
Fs k_

when a2 = null eigenvector of k matrix (6.4)

ors

In general, one cannot set the net transition rates equal to zero because k _ null

eigenvector of the a matrix (i.e., regardless of the choice of kj, one cannot solve for
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aj given wnishlng Fj because the k matrix is nouinvertible.) Hence, these solutions
differ fundamentally (Graham 1973) from the previous ones which exhibited detailed
baiance because the entropy production

S'= E PjlogPj#0 forFj#O (6.5)
jffiD,T,M

Translating back into hydromagnetic language, we have

0 6
.-_ -, v x v ×. (6.6)

6g(x)
!

=

|

o '_ _ (6.7) J

0 $ 1 $

0-'-_"--'V x _ x PP 6h(x) (6.8)

By equation (6.1), Bj = exp(kj_j) where i

k,_ --,/i dxg(x). v x AL, (6.9)

k'_7 _ _-i dx [g(x) • V x (AT -- AD) Jr f(x). AT] (6.10) =-

k3__ dx [h(x). AM+ l(x). V x AMI (6.11) _

These expressions are the minimum required to exhibit nonvanishing OBj(_j)/O_j;
they incorporate Ampere's Law _'ld the definition of vorticity.

By imposing that the derivatives satisfy

O(km_m) _ k,nl_,nn (6.12)

we obtain

kl -- V x V x t,V x AD (6.13)

k2 -- V x (AT X V X (AT -- AD))

ks - V x (V x --" ) x AM
PP

_7 x V x V x (AT- AD) = 0

V X (AT x V X AD)=O

(6.14)

(6.15)

(6.16)

(6.17)
F
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"Uncurling" equations (6.13)-(6.17) yields "constants" of integration:

--V2AD = V_b_ + kl × x/3u

-V2AT = V_7' + kl × x/3u

88g

(6.18)

(6.19)

AT = n](x)V X AD -I- PI, P1 x V X AD =V_I (6.20)

AT = n2(x)V X AT + P_, P_ × V x AT = V_/,_ + k_ x x/3 (6.21)

AM = ns(x)V × AM + Ps, Ps × V x AM = V_bs + ppks × x/3 (6.22)

while the magnetic equation (1.8) with _ = 0 becomes

AT × AM = V x AM + Vsb4

(Compare this with the MFE prediction:)

(6.23)

AT × AM = crAM + TI_7× Am (6.23a)

This gives us enough unknown fields to satisfy the equations (6.18)-(6.23).

Solenoidality will be satisfied if

V.A_=V.AM=O (6.24)

which suggests a vector potential or stream function representation for AM and AT.

For the case in which 9_is linear in B, the stationarlty (vorticity) condition is simply

k]+k2+ks=O (6.25)

For _ analytic in B or containing negative powers of B, cancellation of each power of

B requires that additional conditions be imposed, which we will not discuss further
here.

In the context of our "partial probability" picture, a solution with nonzero tran-

sition rates corresponds to a probability packet cycling consecutively between w

stretching, B stretching (and reconnection, by the induction equation), and to re-
connection. If instead one writes the Hopf equations in terms of u. Vu and B- VB,

depletion of state "M" implies zero magnetic tension, which may have implications

for coronal mass ejection (Low 1990).

_. 7. Driven steady state for particular detailed imbalance

Consider the case in which there is no detailed balance and the (hence nonvan-
ishing) F i = Fj(_). Then equations (5.3)-(5.5) become

a1_-_ + (1 - a2) _b= FI(_) (7.1)
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(_ _)"2 _ + (1 - as) _b= F2(_b)

(_' _)_,_+(1-_,) _= r_(_)

again with the stationarlty condition

(7.2)

(7.3)

Rewrite this as

where

Solving, we obtain

F_(_)= 0 (7.4)
j=l

0SI .0SI
_,--_- + (1 =1- a2)-_-

0S2 . os_
a2-_- -I- (1 - _a)-_- = 1

ass . ass
_s-_-+ (1-al)--_-= 1

(7.5)

(7.6)

(7.7)

d_ (7.8)s_(_) -- Fi(_)

z5"1 = S, (1 - ai) - dr/' al + -- (7.9)
al

(f /:s2= s2 d_'(1- a,) - dC'a2 + (7.1o)
a2

(/< ) i<.<,Sa = Ss d(' (1 - a,) - aa + -- (7.11)
, (iS

Oai 0a2 0a3

where o,)_¢ (?7# /)_ , aj(O) = 1 (7.12)

and ai, ai and as are independent of r/, ¢ and _ respectively. We translate back

into hydromagnetic language as in the previous section except that we choose

k,_ _ L_ dx s(x). V x Av (7.13)

1(/__ )'k2_/--* { dx [S(X). V x (AT - AD) + f(x). AT] (7.14)

i

B
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i

)'/¢3( --* _ dx [h(x) • AM + l(x)- V × AM] (7.15)

The quadratic powers are the minimum required to give nonvaaishing O(k2T1)/_ I

and O(/¢s()/O_. Stationarity implies

which is satisfied if

s
E _ = 0 (7.16)
j=l

_b(S],S=, $3) = _(b, S1 + buS2 - (hi + bu)$s) (7.17)

or more generedly

/db]dbu p(bl,bu ) ek(b,S, + buS, - (b, + bu)Ss) (7.18) (Sl, S2,83)

Normalization of probability imposes the constraint

_(0, O,O) = 1 (7.19)

For the case of constant aj, condition (6.12) implies that Sj is linear in the ar-

guments displayed in (7.9)-(7.12) (not to be confused with (7.8)). The resulting

solutions are analogous to the secular solutions of the wave equation, just as the
solutions of §2.2-2.4 are analogous to the propagating solutions of the wave equation.

?.8. Realizability

For the solution described in §2.6, in the case that _bis linear in B, the probability

density for the velocity and magnetic fields is a sum of (functional) delta functions,

each of the form 1-Ix 6(u(x)- AT(x))_(B(x)- AM(x)) multiplied by similar factors
for the vorticity, current, scalar, and scalar source (and pressure and density, if

the flow is compressible). Realizability imposes the constraint that the coefficients

multiplying the delta functions be positive. For the solution described in §2.7,

for the case of constant a j, realizability constrains the functioned dependence of _b
upon the argument displayed in equation 7.18. For example, if _b is chosen to be

exponential, the probability density for the velocity, vorticity, magnetic field, and

current would be joint Ganssian, hence positive everywhere as desired. Reedizability
remains to be verified for the solutions exhibiting detailed balance.

More generally, it has been suggested (Kraichnan 1991) that realizability could be

imposed upon the probability P[u] by introducing a complex probability amplitude

_[u] and its complex conjugate such that

P[u] = _'[u]_[u] (8.1)

which is positive semidefinite as desired. Although the Hopf equation could be

written in terms of _[u] or its functional Fourier transform _[f] where

= Z (8.2)
{s(=)}
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it is not immediately obvious how to solve this infinite system of coupled equations
or, equivalently, under what circumstances a given solution of the Hopf equation

can be represented in the form (8.2).

One may, however, consider the equation of motion for _[f] rather than for _b[f].

If one imposes the single- valuedness of evolution under equations (1.1)-(1.3) upon
the probability amplitude (a condition analogous to but slightly-more stringent than

equation (5.16)), then, letting T denote the time evolution operator, we have (sym-
botically)

T_[f] = / T{du _[u]}e-'f f'' = / d{T-'u} _b[T-' u]e-i ff'"

= --Jdv ¢[v]e-if f'Tv (8.3)

Hence, _[fl obeys the same Hopf equation as _b[f]. In other words, any solution of the

Hopf equation (e.g., the solutions exhibiting detailed balance) can be inserted into

equation (8.2) to obtain a realizable _b. Guaranteeing realizability in this manner _

does have a drawback, however; the functional integration in equation (8.2) must

be performed (at least in the vicinity of f -- 0) in order to evaluate moments (unless
the moments are of at least first order in all vector components of all physical fields |

in the exponent of equation (1.6)).

i

A certain class of moments can be evaluated without performing functional inte-

gration. Consider moments obtained by taking functional derivatives of

#[f]- _'[fl_[_ (8.4)

rather than of _b[f]. _6[f] may be interpreted as the probability density for the

co//]ugate thld f; its density in velocity space is analogous to the Wigner distribution

function. One may verify that

._#[f]
,_f--_[f=0 = _ _ u(x)¢'[u + v]¢[v] (8.5)

{.(x)} {v(=)}

= = (8.6)

(#).,. -- u- (8.7)

pIf the (probability) density matrix # is diagonal in the veloclty-realization basis,

then there is no phase correlation between states with different u(x) and

=0 (8.8)
z

In other words, (Au(x)) is a measure of the coherent velocity spread at a given

point-or of t_ephase Coherence or |nter_'erence between different reai_zat_0ns. The

probability amplitudes satisfy the Hopf equation and hence can exhibit Upropaga-
tive" behavior in the variables f and x, analogous to the propagation of conventional __
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]

wavefunctions in x and t. However, because the conjugate fields are dummy vari-

ables, it is not clear that interference between different realizations (analogous to

the Aharonov-Bohm effect) would be physically observable.
In order to compute moments without having to perform a functional integration,

we require that _b[f] be local in f yet that P[u] be positive semidefinite. Consider

(in one dimension for notational simplicity) the following piecewise prescription:

[P[u I = df O[f] e-t_ for u > 0

/2- d.f [fl :t,, for u < O (8.9)

where _b[f] takes the form given in equation (8.4). This expression for P[u] is

positive semidefinlte for all real u. At u = 0, P[u] is undefined; however, this
does not affect moments since P[0] is weighted by u = 0 in the integral over u.

One may verify (using the Canchy theorem) that taking functional derivatives of

_b[f] and then setting f = 0 yields moments of the absolute value of u. Given the
evolution equation (5.10) for P[u], _bwill satisfy the Hopf equation if surface terms

_[] = 0] and 6_[f = 0]/Sf vanish (these arise from the functional integration by
parts which is implicit in _P.) The vanishing of the surface terms can be achieved

by subtracting the constant _[] = 0] from _[f], which does not alter the validity

of the Hopf equation for 4. _b will satisfy the Hopf equation if _b does and if cross
terms involving functional derivatives of _ and _b* vanish, which in turn can be

achieved if equation (2.19) is satisfied and if one requires that the real part

Re{V x (G (-1) x G)} = 0 (8.10)

Normalization of probability (7.19) is replaced by the condition

/__ (_[f]- 1 (8.11)df if[

which, by linearity of the Hopf equation, can be satisfied by multiplying _ by

the appropriate constant factor. Whether this approach can be modified to easily

generate moments of non-absolute- valued quantities remains to be seen.

$.9. Time dependence

Time dependence may be incorporated into the framework of §2.5-7 by adding

a term proportional to t to the arguments of _ in equations 5.2 and 7.18 and by

relaxing the stationarity constraints (5.6, 6.25, 7.16). The coe_cient of t in the

argument of _ is chosen to be minus the sum of the coefficients of _, 17and _.
Alternatively, one may take a simpler approach for the class of flow ensembles

exhibiting "limited statistical linearity" (defined below). Consider the incompress-

ible MHD equations without the buoyancy term or scalar equation. If we add a

multiple/_ of the induction equation to the velocity equation, we obtain
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0
Ot [u(x, t)+_B(x, t)] = u.Vu-B-VB+_u.VB-/_B.Vu-t Vp

P

Setting fl - ±1 and defining

1 R__V2BRV2u -

(9.1)

v-u+B, w-u-B (9.2)

we obtain

a t) w. Vv + V___pp_ aV2v _ bV2w
= p

a Vp
-_w(x,t) = v. Vw + -- - aV2w - bV2vP

(9.3)

(9.4)

where

I(1 R---_) I(R 1)+ , (9.5)

Pressure may be eliminated by using incompressibility and the solenoidality of the
magnetic field and inserting the projection operator {1 - (VV/V2)} in front of the
nonlinear terms.

A solution of the Hopf equations corresponding to equations (9.3-4) may be ob-

tained by choosing a moment-generating functional

_[f,g, t]- (e i ff® ax [t(=).v(=)+s(=).w(=)]/ (9.e)

which manifestly closes the equations, i.e., a _bwhose off-diagonal second functional
derivatives are linear combinations of its first functional derivatives. A moment-

generating functional for v, w which satisfies this requirement is

_b[f,g,t] = _][f,t] e f-'- d= s'_, + _2[g,t] e f-'® d,,f._=

where _bl and _2 are arbitrary. One may readily verify for this _ that

(9.7)

(9.8)

This implies that

(u(x,t) × B(x,t)} = (c, - ca) × (u(x,t)} - (Cz + ca) × (B(x,t)) + cx × Cz (9.9)

which offers another rigorous alternative to the conventional MFE model. Note that

diagonal second functional derivatives such as 52_/6.f_Sfj do not reduce to linear

i

r
sffi
r

IF=

r

z
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functional derivatives; correlation functions such as (ui(x)uj(x)) or (Bi(x)Bj(x))

cannot in general be written in terms of (ui(x)) and (B,(x)).

The resulting dosed system of 2 linear equations for the first functional derivatives

of _bis readily diagonalized. For constant el and ca, the term in the Hopf equation

corresponding to w- Vv + v__ in equation (9.3) simplifies:
P

{1 -" cl
(9.10)

(similarly for equation (9.4)) Hence, one obtains propagating diffusive modes (an
admixture of velocity and magnetic field) governed by a dispersion relation w(k)

which satisfies

(_a - c1" k - iak2)(w - ca" k - iak 2) + b2k 4 = 0 (9.11)

For cl = ca, the eigenmodes reduce to excitations which are purely kinetic or

magnetic, diffusing on purely viscous or resistive time scales, respectively. For R =
Rt_, v and w decouple, corresponding to modes whose velocity and magnetic fidd
osciUate in and out of phase, respectively. The case of nonconstant cl and ca and

higher-order correlation functions may be computed by solving analogous but larger,

inhomogeneous dosed systems of equations, involving a diffusive kernel. Whether
these modes are purely statistical (appearing only in the ensemble-averaged flow)

or play a role in individual realizations remains to be clarified.

3. Future plans

The Hopf functional approach offers a new exact method for obtaining stationary

MHD states, both with and without detailed balance, which generalize the usual
ideal static or force-free, equilibrium, nonturbulent states. The treatment of time

dependence beyond the usual, initial linear stability regime also appears possible.

Closed-form analytic expressions for the mean emf and other corre]ation functions

emerge without making perturbative, phenomenological, or statistical assumptions.
Recognizing the wavelike character of the functional differentiai equations enables
one to reduce them to a system of ordinary differential equations, a reduction of

s 3
the number of degrees of freedom in the problem from N 3L to L where N and

L are large numbers on the order of the number of permitted values for velocity

at a given point and the spatial extent of the system, respectively. The solutions

obtained are not necessarily unique or complete but merely illustrative. The possi-

bility of superposition indicates that matching to the mean flow may be necessary

to determine relative strengths of different solutions unless it is possible to close the

equations by substituting, for example, the mean emf and Lamb vector back into
the stationary vorticity equation. Initial conditions or a variationai criterion may

play a role in selecting the correct ensemble or discarding spurious ones. Compu-
tation of moments and of the probability of arbitrary realizations of the velocity,

magnetic field, scaiar, and scalar source is currently under investigation.
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